题文
用长为18cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 题型:未知 难度:其他题型答案
设长方体的宽为x(m),则长为2x(m),高为h=18-12x4=4.5-3x(m)(0<x<32).故长方体的体积为V(x)=2x2(4.5-3x)=9x2-6x3(m3)(0<x<32).从而V′(x)=18x-18x2=18x(1-x).令V′(x)=0,解得x=0(舍去)或x=1,因此x=1.当0<x<1时,V′(x)>0;当1<x<23时,V′(x)<0,故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值.从而最大体积V=V′(x)=9×12-6×13(m3),此时长方体的长为2m,高为1.5m.答:当长方体的长为2m时,宽为1m,高为1.5m时,体积最大,最大体积为3m3.点击查看指数函数模型的应用知识点讲解,巩固学习
解析
18-12x4考点
据考高分专家说,试题“用长为18cm的钢条围成一个长方体形状的.....”主要考查你对 [指数函数模型的应用 ]考点的理解。 指数函数模型的应用 指数函数模型的定义: 恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。指数型复合函数的性质的应用:
(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.
本文发布于:2023-02-04 16:02:06,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/342667.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |