题文
某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售单价每涨1元,销售量就减少1个,为了获得最大利润,则此商品的最佳售价应为多少? 题型:未知 难度:其他题型答案
设最佳售价为(50+x)元,利润为y元,根据实际问题可知x>0,y=(50+x)(50-x)-(50-x)×40=-x2+40x+500根据二次函数在顶点处取得最值,即当x=20时,y取得最大值,所以定价应为70元.答:为了获得最大利润,则此商品的最佳售价应为70元.点击查看指数函数模型的应用知识点讲解,巩固学习
解析
该题暂无解析
考点
据考高分专家说,试题“某商品进货单价为40元,若销售价为50元.....”主要考查你对 [指数函数模型的应用 ]考点的理解。 指数函数模型的应用 指数函数模型的定义: 恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。指数型复合函数的性质的应用:
(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.
本文发布于:2023-02-04 16:02:02,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/342630.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |