题文
某太阳能热水器厂2007年的年生产量为670台,该年比上一年的年产量的增长率为34%.从2008年开始,以后的四年中,年生产量的增长率逐年递增2%(如,2008年的年生产量的增长率为36%).(1)求2008年该厂太阳能热水器的年生产量(结果精确到0.1台);(2)求2011年该厂太阳能热水器的年生产量(结果精确到0.1台);(3)如果2011年的太阳能热水器的实际安装量为1420台,假设以后若干年内太阳能热水器的年生产量的增长率保持在42%,到2015年,要使年安装量不少于年生产量的95%,这四年中太阳能热水器的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?(参考数据:1.423≈2.863,1.424≈4.066,1.6853≈4.788,1.6154≈6.8,1.5634=5.968 ). 题型:未知 难度:其他题型答案
(1)∵2008年的年生产量的增长率为36%∴2008年该厂太阳能热水器的年生产量为y=670×1.36=911.2台;(2)设2011年生产量为y,根据题意:y=670×(1+36%)(1+38%)(1+40%)(1+42%)=670×1.36×1.38×1.40×1.42=2499.8.(3)设至少达到x.则由题意,可得1420(1+x)42499.8(1+42%)4≥95%∴(1+x)4≥6.8解得:x≥0.615.答:这四年中太阳能热水器的年安装量的平均增长率至少应达到0.615.点击查看指数函数模型的应用知识点讲解,巩固学习
解析
1420(1+x)42499.8(1+42%)4考点
据考高分专家说,试题“某太阳能热水器厂2007年的年生产量为6.....”主要考查你对 [指数函数模型的应用 ]考点的理解。 指数函数模型的应用 指数函数模型的定义: 恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。指数型复合函数的性质的应用:
(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.
本文发布于:2023-02-04 16:01:45,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/342499.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |