某小区要建一个面积为500平方米的矩形绿地,四周有小路,绿地长边外路宽5米,短边外路宽9米,怎样设计绿地的长与宽,使绿地和小路所占的总面积最小,并求出最小值.

更新时间:2023-02-04 16:01:43 阅读: 评论:0

题文

某小区要建一个面积为500平方米的矩形绿地,四周有小路,绿地长边外路宽5米,短边外路宽9米,怎样设计绿地的长与宽,使绿地和小路所占的总面积最小,并求出最小值. 题型:未知 难度:其他题型

答案

设绿地长边为x米,则宽为500x米,总面积S=(x+18)(500x+10)=680+10x+9000x≥680+210x?9000x=1280;当且仅当10x=9000x,即x=30时,上式取等号;所以,绿地的长为30米,宽为503米时,绿地和小路所占的总面积最小,最小值为1280平方米.

点击查看指数函数模型的应用知识点讲解,巩固学习

解析

500x

考点

据考高分专家说,试题“某小区要建一个面积为500平方米的矩形绿.....”主要考查你对 [指数函数模型的应用 ]考点的理解。 指数函数模型的应用 指数函数模型的定义: 恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.

本文发布于:2023-02-04 16:01:43,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/342487.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:绿地   外路   求出   小路   矩形
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图