初等矩阵都是可逆矩阵吗

更新时间:2023-02-04 15:38:47 阅读: 评论:0

初等矩阵都是可逆矩阵。是否可逆看它的行列式是否为零,因为初等矩阵行列式都为1,所以都可逆。初等矩阵是一个n阶单位矩阵E经过一次初等行变换。从正交矩阵的构成定理来看,要求矩阵里的每个元素的绝对值都不能够大于1,三类二阶及以上初等矩阵除掉单位矩阵显然均不会满足这一点。

首先,初等矩阵都可逆,其次,初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。例如,交换矩阵中某两行(列)的位置;用一个非零常数k乘以矩阵的某一行(列);将矩阵的某一行(列)乘以常数k后加到另一行(列)上去。若某初等矩阵左乘矩阵A,则初等矩阵会将原先施加到单位矩阵E上的变换,按照同种形式施加到矩阵A之上。或者说,想对矩阵A做变换,但是不是直接对矩阵A去做处理,而是通过一种间接方式去实现。

初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。

本文发布于:2023-02-04 15:38:47,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/337429.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:矩阵   都是
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图