已知f(x)=ax

更新时间:2023-02-04 15:30:49 阅读: 评论:0

题文

已知f(x)=ax-2,g(x)=loga|x|(a>0,且a≠0),若f(2011)·g(-2011)<0,则y=f(x)与y=g(x)在同一坐标系内的大致图形是

解析

解:由题意f(x)=ax-2是指数型的,g(x)=loga|x|是对数型的且是一个偶函数,由f(4)?g(-4)<0,可得出g(-4)<0,由此特征可以确定C、D两选项不正确,A,B两选项中,在(0,+∞)上,函数是减函数,故其底数a∈(0,1)由此知f(x)=ax-2,是一个减函数,由此知B不对,A选项是正确答案故选A

考点

据考高分专家说,试题“已知f(x)=ax-2,g(x)=log.....”主要考查你对 [对数函数的解析式及定义(定义域、值域) ]考点的理解。 对数函数的解析式及定义(定义域、值域)

对数函数的定义:

一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R。

对数函数的解析式:

y=logax(a>0,且a≠1)

在解有关对数函数的解析式时注意:

在涉及到对数函数时,一定要注意定义域,即满足真数大于零;求值域时,还要考虑底数的取值范围。

本文发布于:2023-02-04 15:30:49,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/334692.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:ax
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图