题文
已知函数解析
专题:综合题;转化思想;综合法.分析:由反函数的性质知,关于x的不等式f-1(x)<m(m∈R)有解,说明(-∞,m)与原函数的定义域的交集不是空集,由此求出原函数的定义域即可.解答:解:∵数f(x)=loga(2+x)-loga(2-x)(a>0,a≠1),∴,解得-2<x<2∵f(x)的反函数为f-1(x).若关于x的不等式f-1(x)<m(m∈R)有解∴m>-2 故选A.点评:本题考查反函数,解题的关键是根据反函数的定义判断出反函数不等式有解,得出(-∞,m)与原函数的定义域的交集不是空集,本题易因为理解有误出错.考点
据考高分专家说,试题“已知函数,设的反函数为。若关于x的不等式.....”主要考查你对 [对数函数的解析式及定义(定义域、值域) ]考点的理解。 对数函数的解析式及定义(定义域、值域)对数函数的定义:
一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R。
对数函数的解析式:
y=logax(a>0,且a≠1)
在解有关对数函数的解析式时注意:
在涉及到对数函数时,一定要注意定义域,即满足真数大于零;求值域时,还要考虑底数的取值范围。
本文发布于:2023-02-04 15:30:43,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/334677.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |