题文
若x、y、z均为实数,且a=x2-2y+,b=y2-2z+,c=z2-2x+,则a、b、c中是否至少有一个大于零?请说明理由. 题型:未知 难度:其他题型答案
是点击查看四种命题及其相互关系知识点讲解,巩固学习
解析
分析:“a、b、c中是否至少有一个大于零”包括多种情况,正面解决很复杂,可考虑反面入手,利用反证法证明,但如何导出矛盾颇有技巧.假设a、b、c都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0.而a+b+c=x2-2y++y2-2z++z2-2x+=(x-1)2+(y-1)2+(z-1)2+π-3,∵π-3>0,且无论x、y、z为何实数,(x-1)2+(y-1)2+(z-1)2≥0,∴a+b+c>0.这与a+b+c≤0矛盾.因此,a、b、c中至少有一个大于0.考点
据考高分专家说,试题“若x、y、z均为实数,且a=x2-2y+.....”主要考查你对 [四种命题及其相互关系 ]考点的理解。 四种命题及其相互关系1、四种命题:
一般地,用p和q分别表示原命题的条件和结论,用或分别表示p和q的否定,四种命题的形式是:(1)原命题:若p则q;(2)逆命题:若q则p;(3)否命题:若则;(4)逆否命题:若则。
2、四种命题的真假关系:
一个命题与它的逆否命题是等价的,其逆命题与它的否命题也是等价的;
3、四种命题的相互关系:
注意:
1、区别“否命题”与“命题的否定”,若原命题是“若p则q”,则这个命题的否定是“若p则非q”,而它的否命题是“若非p则非q”。
2、互为逆否命题同真假,即“等价”
本文发布于:2023-02-04 14:56:54,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/326296.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |