题文
Y已知p:|1﹣|≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围. 题型:未知 难度:其他题型答案
解法一:由p:|1﹣|≤2,解得﹣2≤x≤10,∴“非p”:A={x|x>10或x<﹣2}由q:x2﹣2x+1﹣m2≤0,解得1﹣m≤x≤1+m(m>0)
∴“非q”:B={x|x>1+m或x<1﹣m,m>0由“非p”是“非q”的必要而不充分条件可知:BA.解得m≥9.∴满足条件的m的取值范围为{m|m≥9}.解法二:由“非p”是“非q”的必要而不充分条件.即“非q”“非p”,但“非p”“非q”,可以等价转换为它的逆否命题:“pq,但qp”.即p是q的充分而不必要条件.由|1﹣|≤2,解得﹣2≤x≤10,∴p={x|﹣2≤x≤10}由x2﹣2x+1﹣m2>0,
解得1﹣m≤x≤1+m(m>0)∴q={x|1﹣m≤x≤1+m,m>0}由p是q的充分而不必要条件可知:pq解得m≥9.∴满足条件的m的取值范围为{m|m≥9}.
充分条件与必要条件知识点讲解,巩固学习
解析
该题暂无解析
本文发布于:2023-02-04 14:23:24,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/317179.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |