题文
足球比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,-2,+5,-6,+12,-9,+4,-14。(假定开始计时时,守门员正好在球门线上)。(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),则对方球员挑射极可能造成破门。问:在这一时段内,对方球员有几次挑射破门的机会?简述理由。
题型:未知 难度:其他题型
答案
解:(1)(+10)+(-2)+(+5)+(-6)+(+12)+(-9)+(+4)+(-14)=0 ,能回到球门线上;(2)守门员离开球门线的最远距离达19米;(3)在这一时段内,对方球员有3次挑射破门的机会。
解析
该题暂无解析
考点
据考高分专家说,试题“足球比赛中,根据场上攻守形势.....”主要考查你对 [正数与负数 ]考点的理解。
正数与负数
正数:就是大于0的(实数)负数:就是小于0的(实数)0既不是正数也不是负数。
非负数:正数与零的统称。非正数:负数与零的统称。
正负数的认识:1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:-a一定是负数吗?答案是不一定,因为字母a可以表示任意的数。若a表示正数时,-a是负数;当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;当a表示负数时,-a就不是负数了,它是一个正数。
2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3.数细分有五类:正整数、正分数、0、负整数、负分数;但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
本文发布于:2023-02-04 12:04:47,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/286457.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |