题文
设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,z中( )A.都不小于0B.都不大于0C.至少有一个小于0D.至少有一个大于0
题型:未知 难度:其他题型
答案
∵x=a2-bc,y=b2-ca,z=c2-ab,∴2(x+y+z)=2a2-2bc+2b2-2ca+2c2-2ab=(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=(a-b)2+(b-c)2+(c-a)2>0,∴x+y+z>0,故x,y,z至少有一个大于0,故选D.
点击查看有理数的乘方知识点讲解,巩固学习
解析
该题暂无解析
考点
据考高分专家说,试题“设a,b,c是不全相等的任意实数,若x=.....”主要考查你对 [有理数的乘方 ]考点的理解。
有理数的乘方
有理数乘方的定义:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。 22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。①习惯上把22叫做2的平方,把23叫做2的立方;②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:乘方是乘法的特例,其性质如下:(1)正数的任何次幂都是正数; (2)负数的偶次幂是正数,负数的奇次幂是负数; (3)0的任何(除0以外)次幂都是0; (4)a2是一个非负数,即a2≥0。
有理数乘方法则:①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0 点拨:①0的次幂没意义;②任何有理数的偶次幂都是非负数;③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;④负数的乘方与乘方的相反数不同。
乘方示意图:
本文发布于:2023-02-04 05:45:01,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/203149.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |