题文
(1)用“>”、“<”、“=”填空:35______36,53______63(2)比较下列各组中三个数的大小并用“<”连接:①410,86,164 ②255,344,433.
题型:未知 难度:其他题型
答案
(1)∵3>1,∴35<36,故答案为:<;∵1<5<6,∴53<63,故答案为:<;(2)①∵410=(42)5=410,164=(42)4=48,∵410>48,∴410>164,∵86=(82)3,=(26)3=412,∵163<164,∴86>164,∴164<410<86;②∵255=(25)11,344=(34)11,433=(43)11,又∵25=32<43=64<34=81,∴255<433<344.
点击查看有理数的乘方知识点讲解,巩固学习
解析
该题暂无解析
考点
据考高分专家说,试题“(1)用“>”、“<”、“=”填空:35.....”主要考查你对 [有理数的乘方 ]考点的理解。
有理数的乘方
有理数乘方的定义:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。 22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。①习惯上把22叫做2的平方,把23叫做2的立方;②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:乘方是乘法的特例,其性质如下:(1)正数的任何次幂都是正数; (2)负数的偶次幂是正数,负数的奇次幂是负数; (3)0的任何(除0以外)次幂都是0; (4)a2是一个非负数,即a2≥0。
有理数乘方法则:①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0 点拨:①0的次幂没意义;②任何有理数的偶次幂都是非负数;③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;④负数的乘方与乘方的相反数不同。
乘方示意图:
本文发布于:2023-02-04 05:44:50,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/203105.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |