对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,下图中的函数是有

更新时间:2023-02-04 05:39:13 阅读: 评论:0

题文

对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数和是不是有界函数?若是有界函数,求其边界值;(2)若函数的边界值是2,且这个函数的最大值也是2,求的取值范围;(3)将函数的图象向下平移个单位,得到的函数的边界值是,当在什么范围时,满足?

题型:未知 难度:其他题型

答案

(1)(x>0)不是是,边界为3(2)(3)

点击查看不等式的性质知识点讲解,巩固学习

解析

(1)依据定义进行判断(x>0)不是,是,边界为3先分别求出当x=a与当x=b时的y的值,通过比较得出的取值范围分情况讨论即可试题解析:(1)(x>0)不是是,边界为3(2)∵y=-x+1  y随x的增大而减小当x=a时,y= -a+1=2,  a= -1当x=b时,y= -b+1      (3)若m>1,函数向下平移m个单位后,x=0时,函数的值小于-1,此时函数的边界t大于1,与题意不符,故.当x=-1时,y=1    (-1,1)当x=0时,ymin=0都向下平移m个单位(-1,1-m)(0,-m)

考点

据考高分专家说,试题“对某一个函数给出如下定义:若存在实数,对.....”主要考查你对 [不等式的性质 ]考点的理解。

不等式的性质

不等式的性质:1、不等式的基本性质:不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。即如果a>b,那么a±c>b±c。不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。即如果a>b,c>0,那么ac>bc(或)。 不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向改变。即如果a>b,c<0,那么acb,则b3、不等式的传递性:若a>b,b>c,则a>c。

不等式的性质:①如果x>y,那么yy,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xzy,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷zy,m>n,那么x+m>y+n;(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂

不等式的基本性质和等式的基本性质的异同:①相同点:无论是等式还是不等式,都可以在它的两边加(或减)同一个数或同一个整式;②不同点:对于等式来说,在等式的两边乘(或除以)同一个正数(或同一个负数),等式仍然成立,但是对于不等式来说,却不大一样,在不等式的两边乘(或除以)同一个正数,不等号的方向不变,而在不等式的两边乘(或除以)同一个负数,不等号要改变方向。

原理:①不等式F(x)F(x)同解。②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)0与不等式同解;不等式F(x)G(x)<0与不等式同解。

本文发布于:2023-02-04 05:39:13,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/202655.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   是有   实数   边界   图中
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图