题文
定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是 .(2)如果,求满足条件的所有正整数x.
题型:未知 难度:其他题型
答案
(1)﹣2≤a<﹣1(2)5,6
点击查看不等式的性质知识点讲解,巩固学习
解析
分析:(1)根据[a]=﹣2,得出﹣2≤a<﹣1,求出a的解即可。(2)根据题意得出3≤<4,求出x的取值范围,从而得出满足条件的所有正整数的解。解:(1)∵[a]=﹣2,∴a的取值范围是﹣2≤a<﹣1。(2)根据题意得:3≤<4,解得:5≤x<7。∴满足条件的所有正整数为5,6。
考点
据考高分专家说,试题“定义:对于实数a,符号[a]表示不大于a.....”主要考查你对 [不等式的性质 ]考点的理解。
不等式的性质
不等式的性质:1、不等式的基本性质:不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。即如果a>b,那么a±c>b±c。不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。即如果a>b,c>0,那么ac>bc(或)。 不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向改变。即如果a>b,c<0,那么ac
不等式的性质:①如果x>y,那么y
不等式的基本性质和等式的基本性质的异同:①相同点:无论是等式还是不等式,都可以在它的两边加(或减)同一个数或同一个整式;②不同点:对于等式来说,在等式的两边乘(或除以)同一个正数(或同一个负数),等式仍然成立,但是对于不等式来说,却不大一样,在不等式的两边乘(或除以)同一个正数,不等号的方向不变,而在不等式的两边乘(或除以)同一个负数,不等号要改变方向。
原理:①不等式F(x)F(x)同解。②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)
本文发布于:2023-02-04 05:26:30,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/200302.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |