试确定实数a的取值范围,使不等式组x2+x+13>0x+5a+43>43(x+1)+a恰有两个整数解.

更新时间:2023-02-04 05:04:12 阅读: 评论:0

题文

试确定实数a的取值范围,使不等式组

x2+x+13>0x+5a+43>43(x+1)+a恰有两个整数解.

题型:未知 难度:其他题型

答案

由x2+x+13>0,两边同乘以6得3x+2(x+1)>0,解得x>-25,(3分)由x+5a+43>43(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,(6分)∴原不等式组的解集为-25<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a较大值在1(不含1)到2(含2)之间,∴1<2a≤2,(9分)∴0.5<a≤1.(10分)

点击查看一元一次不等式组的解法知识点讲解,巩固学习

解析

x2

考点

据考高分专家说,试题“试确定实数a的取值范围,使不等式组x2+.....”主要考查你对 [一元一次不等式组的解法 ]考点的理解。

一元一次不等式组的解法

一元一次不等式组解集:一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。 例如:不等式x-5≤-1的解集为x≤4;不等式x﹥0的解集是所有非零实数。解法:求不等式组的解集的过程,叫做解不等式组。

求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分;一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设a

一元一次不等式组的解答步骤:(1)分别求出不等式组中各个不等式的解集;(2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;(3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。 解法诀窍:同大取大 ;例如:X>-1X>2不等式组的解集是X>2 同小取小;例如:X<-4X<-6不等式组的解集是X<-6 大小小大中间找;例如,x1,不等式组的解集是1

一元一次不等式组的整数解:一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。例如所以原不等式的整数解为1,2。

本文发布于:2023-02-04 05:04:12,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/197068.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:实数   不等式   整数   有两个
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图