题文
某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等.根据经验,各部门每1万元营业额所需售货员人数和每1万元营业额所得利润情况如下表.商场将计划日营业额分配给三个营业部,设分配给百货部、服装部和家电部的营业额分别为x(万元),y(万元)和z(万元)(x、y、z都是整数)(1)请用含x的代数式分别表示y和z;(2)若商场预计每日的利润为C(万元),且C满足19≦C≦19.7,问这个商场应怎样分配日营业额给三个营业部?各部应分别安排多少名售货员?
题型:未知 难度:其他题型
答案
解:(1)依题意列方程组:,②﹣①×2得:③;①×4﹣②得:④;(2)C=0.3x+0.5y+0.2z,把③④式代入C:C=0.3x+0.5(35﹣)+0.2(25+)=﹣0.35x+22.5,∵19≦C≦19.7,∴19≦﹣0.35x+22.5≦19.7,解此不等式得:8≦x≦10,∴x=8、9、10,y=23、21.5、20,z=29、29.5、30,∵x,y,z都是整数.∴x,y,z的解分别为(8,23,29)或(10,20,30).答:这个商场分配日营业额方案为百货部8万元(40人),服装部23万元,售货员为92人,家电部为29万元,售货员为58人;或者是百货部营业额10万元,用人50,服装部20万元,80人,家部电30万元,60人.
点击查看一元一次不等式组的应用知识点讲解,巩固学习
解析
该题暂无解析
考点
据考高分专家说,试题“某新建商场设有百货部、服装部.....”主要考查你对 [一元一次不等式组的应用 ]考点的理解。
一元一次不等式组的应用
应用:列一元一次不等式组解决实际问题。
一元一次不等式的应用主要涉及问题:1.分配问题:例:一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。 2.积分问题:例:某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学生有1道未答。那么他至少答对几道题才能及格? 3.比较问题:例:某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?
4.行程问题:例:抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?
5.车费问题:例:出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租 汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程超过多少km? 6.浓度问题:例:在1千克含有40克食盐的海水中,在加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐?
7.增减问题:例:一根长20cm的弹簧,一端固定,另一端挂物体。在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.求弹簧所挂物体的最大质量是多少?
8.销售问题:例:商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?
一元一次不等式组解应用题的一般步骤为:列不等式组解决实际问题的步骤与列一元一次不等式解应用题的步骤相类似,所不同的是,前者需寻求的不等关系往往不止一个,而后者只需找出一个不等关系即可。(1)审:认真审题,分清已知量、未知量及其关系,找出题中的不等关系,要抓住题中的关键词语,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系列出不等式组;(4)解:解出所列不等式组的解集;(5)答:写出答案,从不等式组的解集中找出符合题意的答案,并检验是否符合题意。
本文发布于:2023-02-04 04:59:10,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/196288.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |