竞赛题并不是想象的那么难!要从简单中发现规律

更新时间:2023-02-04 03:44:47 阅读: 评论:0

我们小学数学竞赛的许多题目都是具有规律的,如果我们能够仔细地去思考去发现它、总结它,那么对于我们今后的学习会起到意想不到的效果。如:在学习了整除之后你会做这道题吗?

1999加上A能够被13整除,2000加上A能够被17整除,那么A最小是几?

猛一看似乎是求13和17的最小公倍数的问题,但仔细一想又不对。那么怎么做呢?别着急,我们先看一个简单的题:

13|16+B求B是几?容易得B为10或23或36……

当B=10时,13|16+10,16÷13=1…3

10÷13=0…10   13|3+10

当B=23时,13|16+23,16÷13=1…3

23÷13=1…10   13|3+10

当B=36时,13|16+36,16÷13=1…3

36÷13=2…10   13|3+10

是巧合吗?经验证不是巧合。于是我们可以得到如下规律:如果C| A+B ,那么A和B分别除以C的余数的和一定能够被C整除。反之也成立。即如果A和B除以C的余数的和能够被C整除,那么C|A+B。根据这个规律我们可以较易的解出上题:解:

13|1999+A          |   17|2000+A

1999÷13=153…10    |    2000÷17=117…11

13|10+A            |    17|11+A

A÷13…余3          |    A÷17…余6

根据A ÷13余3和A÷17余6可较易得出:A=159。答:A最小是159。

练习:已知:29|1996+A   17|1999+A   求A最小是几?

注:发表于《中小学数学教学》   第928期 第五版  2004年6月23日

学而思教育版权所有,未经许可,请勿转载。

本文发布于:2023-02-04 03:44:47,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/186503.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:规律   简单   发现   竞赛题
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图