牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。这类问题常用到四个基本公式,分别是:
(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。如果有牛21头,几天能把草吃尽?
摘录条件:
27头 6天 原有草+6天生长草
23头 9天 原有草+9天生长草
21头 ?天 原有草+?天生长草
解答这类问题关键是要抓住牧场青草总量的变化。设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?
(27-15)×6=72
那么:第一次吃草量27×6=162第二次吃草量23×9=207
每天生长草量45÷3=15
原有草量(27-15)×6=72或162-15×6=72
21头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)
例2一水库原有存水量一定,河水每天入库。5台抽水机连续20天抽干,6台同样的抽水机连续15天可抽干,若要6天抽干,要多少台同样的抽水机?
摘录条件:
5台 20天 原有水+20天入库量
6台 15天 原有水+15天入库量
?台 6天 原有水+6天入库量
设1台1天抽水量为"1",第一次总量为5×20=100,第二次总量为6×15=90
每天入库量(100-90)÷(20-15)=2
20天入库2×20=40,原有水100-40=60
60+2×6=7272÷6=12(台)
本文发布于:2023-02-04 03:44:46,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/186501.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |