高中学校数学教学教案5篇

更新时间:2024-01-22 01:38:29 阅读: 评论:0

2024年1月22日发(作者:齐登科)

高中学校数学教学教案5篇

一、教学内容分析

向量作为工具在数学、物理以及实际生活中都有着广泛的应用。

本小节的重点是结合向量学问证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用。

二、教学目标设计

1、通过利用向量学问解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去对待一些数学问题,使一些数学学问有机联系,拓宽解决问题的思路。

2、了解构造法在解题中的运用。

三、教学重点及难点

重点:平面对量学问在各个领域中应用。

难点:向量的构造。

四、教学流程设计

五、教学过程设计

(一)、复习与回忆

1、提问:以下哪些量是向量?

(1)力(2)功(3)位移(4)力矩

2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[说明]复习数量积的有关学问。

(二)、学习新课

例1(书中例5)

向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有很多妙用!请看

例2(书中例3)

证法(一)原不等式等价于,由根本不等式知(1)式成立,故原不等式成立。

证法(二)向量法

[说明]本例关键引导学生观看不等式构造特点,构造向量,并发觉(等号成立的充要条件是)

例3(书中例4)

[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明。

(三)、稳固练习

1、如图,某人在静水中游泳,速度为km/h。

(1)假如他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?

答案:沿北偏东方向前进,实际速度大小是8 km/h。

(2)他必需朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?

答案:朝北偏西方向前进,实际速度大小为km/h。

(四)、课堂小结

1、向量在物理、数学中有着广泛的应用。

2、要学会从不同的角度去看一个数学问题,是数学学问有机联系。

(五)、作业布置

1、书面作业:课本P73,练习8.4 4

高中学校数学教学教案篇2

教学预备

教学目标

熟识两角和与差的正、余公式的推导过程,提高规律推理力量。

把握两角和与差的正、余弦公式,能用公式解决相关问题。

教学重难点

娴熟两角和与差的正、余弦公式的正用、逆用和变用技巧。

教学过程

复习

两角差的余弦公式

用- B代替B看看有什么结果?

高中学校数学教学教案篇3

教学目的:把握圆的标准方程,并能解决与之有关的问题

教学重点:圆的标准方程及有关运用

教学难点:标准方程的敏捷运用

教学过程:

一、导入新课,探究标准方程

二、把握学问,稳固练习

练习:⒈说出以下圆的方程

⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

⒉指出以下圆的圆心和半径

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊推断3x-4y-10=0和x2+y2=4的位置关系

⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建筑时每隔4米加

一个支柱支撑,求A2P2的长度。

例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

四、小结练习P771,2,3,4

五、作业P811,2,3,4

高中学校数学教学教案篇4

一、指导思想与理论依据

数学是一门培育人的思维,进展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分提醒猎取学问和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采纳观看、启发、类比、引导、探究相结合的教学方法。在教学手段上,则采纳多媒体帮助教学,将抽象问题形象化,使教学目标表达的更加完善。

二、教材分析

三角函数的诱导公式是一般高中课程标准试验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经把握的任意角的三角函数的定义和诱导公式(一)的根底上,利用对称思想发觉任意角、终边的对称关系,发觉他们与单位

圆的交点坐标之间关系,进而发觉他们的三角函数值的关系,即发觉、把握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培育学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有特别重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有擅长动手的良好学习习惯,所以采纳发觉的教学方法应当能轻松的完本钱节课的教学内容。

四、教学目标

(1)根底学问目标:理解诱导公式的发觉过程,把握正弦、余弦、正切的诱导公式;

(2)力量训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进展简洁的三角函数求值与化简;

(3)创新素养目标:通过对公式的推导和运用,提高三角恒等变形的力量和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的力量;

(4)共性品质目标:通过诱导公式的学习和应用,感受事物之间的一般联系规律,运用化归等数学思想方法,提醒事物的本质属性,培育学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并把握诱导公式。

2、教学难点

正确运用诱导公式,求三角函数值,化简三角函数式。

六、教法学法以及预期效果分析

高中数学优秀教案高中数学教学设计与教学反思

“授人以鱼不如授之以鱼”,作为一名教师,我们不仅要传授给学生数学学问,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、仔细探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学学问,更主要作用是为了训练人的思维技能,提高人的思维品质。

在本节课的教学过程中,本人以学生为主题,以发觉为主线,尽力渗透类比、化归、数形结合等数学思想方法,采纳提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特别到一般,尽力营造轻松的学习环境,让学生体会学习的欢乐和胜利的喜悦。

2、学法

“现代的文盲不是不识字的人,而是没有把握学习方法的人”,许多课堂教学经常以高起点、大容量、快推动的做法,以便教给学生更多的学问点,却忽视了学生承受学问需要时间消化,进而消灭了学生学习的兴趣与热忱。如何能让学生最大程度的消化学问,提高学习热忱是教者必需思索的问题。

在本节课的教学过程中,本人引导学生的学法为思索问题、共同探讨、解决问题简洁应用、重现探究过程、练习稳固。让学生参加探究的全部过程,让学生在猎取新学问及解决问题的方法后,合作沟通、共同探究,使之由被动学习转化为主动的自主学习。

3、预期效果

本节课预期让学生能正确理解诱导公式的发觉、证明过程,把握诱导公式,并能娴熟应用诱导公式了解一些简洁的化简问题。

七、教学流程设计

(一)创设情景

1、复习锐角300,450,600的三角函数值;

2、复习任意角的三角函数定义;

3、问题:由,你能否知道sin2100的值吗?引如新课。

设计意图

高中数学优秀教案高中数学教学设计与教学反思

自信的鼓舞是增加学生学习数学的自信,简洁易做的题加强了每个学

生学习的热忱,详细数据问题的消失,让学生既有似乎会做的心理但又有迷惑的茫然,去开掘潜力期盼查找时机证明我能行,从而思索解决的方法。

(二)新知探究

1、让学生发觉300角的终边与2100角的终边之间有什么关系;

2、让学生发觉300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

3、Sin2100与sin300之间有什么关系。

设计意图

由特别问题的引入,使学生简单了解,实现教学过程的平淡过度,为同学们探究发觉任意角与的三角函数值的关系做好铺垫。

(三)问题一般化

探究一

1、探究发觉任意角的终边与的终边关于原点对称;

2、探究发觉任意角的终边和角的终边与单位圆的交点坐标关于原点对称;

3、探究发觉任意角与的三角函数值的关系。

设计意图

首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特别到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。

同时也为学生将要自主发觉、探究公式三和四起到示范作用,下面练习设计为了熟识公式一,让学生感知到胜利的喜悦,进而敢于挑战,敢于前进

高中学校数学教学教案篇5

教学目标

1、明确等差数列的定义。

2、把握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3、培育学生观看、归纳力量。

教学重点

1、等差数列的概念;

2、等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具预备

投影片1张

教学过程

(I)复习回忆

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思索,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②—2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,假如一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,—2……

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n—1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)—401是不是等差数列—5,—9,—13…的项?假如是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,此题是要答复是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌争论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:(V)课后作业

一、课本P118习题3。21,2

二、1、预习内容:课本P116例2P117例4

2、预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

本文发布于:2024-01-22 01:38:29,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/1183646.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:学生   数学   公式
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图