-立柱(美标)

更新时间:2023-08-01 09:06:43 阅读: 评论:0

4.4.1 Calculation Notes
According to <Aluminum Design Manual> (2005), the Load and Resistance Factor design  is adopted.
Material:Alloy 6063-T5
F ty =110MPa tensile yield strength
F cy =110MPa compressive yield strength
Φy  =0.95resistance factor for yield
Φb  =0.85resistance factor for beams
Φc  =0.85resistance factor for columns
Φvp =0.9resistance factor for inelastic shear buckling Φv  =0.8resistance factor for elastic shear buckling L b =4200mm unbraced mullion length
L y =4200mm unsupported mullion length
L x =4200mm unsupported mullion length
E=70000 MPa elastic modulus of aluminium
d lim= min(L b/175,19mm) =19mm deflection limit
4.4 Check aluminium glass mullion Refer to dwg. DT-101:
此情绵绵For Male:
A=2247.87mm2area of mullion
Ix=16144900mm4moment of inertia about its local x axis
Iy=1409560mm4moment of inertia about its local y axis
Scx = 127188mm3ction modulus of beam, compression side about its local x axis J=9294.17mm4torsional constant
Flange:
bf =51 mm width of flange
tf =3.5 mm thickness of flange
Web:
c c =120 mm distance from neutral axis to extreme fiber of the element with
c o =-47.5 mm distance from neutral axis to other extreme fiber of the element with
hw =167.5 mm height of web
tw =4 mm thickness of web
For Female:
A=1961.35mm2area of mullion
Ix=13155300mm4moment of inertia about its local x axis
网络流行歌曲100首Iy=525104mm4moment of inertia about its local y axis
Scx = 97289.5mm3ction modulus of beam, compression side about its local x axis J=6172.55mm4torsional constant
Flange:
bf = 41 mm width of flange
tf = 5 mm thickness of flange
Web:
c c =128.5 mm distance from neutral axis to extreme fiber of the element with
c o =-39.5 mm distance from neutral axis to other extreme fiber of the element with
hw =168 mm height of web
tw = 4 mm thickness of web
4.4.3 Mechanical Model
Loads apply to Mullion
最烧脑的电影wk= -1.5 KPa
w= -2.1 KPa
qLk= wk x B= 1.5x1.5 = 2.25 KN/m qL=  w x B= 2.1x1.5 = 3.15 KN/m
6945750 Nm
design moment about its local x axis Nz=G/A= 898.03 N design compression force Vy= qB/2 = 2363 N
design shear force
4.4.4 Buckling formula constants
1) bukling formula constants for compression in columns and beam flange
119.26 MPa
0.49 MPa
辛弃疾资料
99.79 MPa
2) bukling formula constants for uniform compression in flat elements
134.29 MPa 0.59 MPa
93.32 MPa
k 1-p = 0.35k 2-p = 2.27
3) bukling formula constants for bending compression in flat elements
194.52 MPa Bp =Fcy 1+=⎛
⎭Bp Dp ==100.41Bp Cp ==Dp
Bbr =1.3Fcy 1+=⎛  Bc =Fcy 1+=⎛  ⎝Dc =
=0.41Bc Cc ==Dc
2
L b q L Mx =8
=
1.26 MPa    10
2.92 MPa k 1-br = 0.5k 2-br = 2.04
4) bukling formula constants for shear in flat element
77.82 MPa
0.26 MPa    122.72 MPa 4.4.5 Calculation for design stress for male mullion
4.4.
5.1 The design compression stress
算长细比)
1) From clau 3.4.7 compression in columns, axial, gross ction See <Aluminum Design Manual> (2005) Page I-B-26
84.75 MPa 25.04 MPa radius of gyration of ction
0.63
2.12
slendermess parameter
λ= max(λx,λy) =2.12 >1.2then:Φcc  =min(0.58+0.14λ,0.95)=0.88
38.81 MPa 0.24 MPa
1.26 MPa
ΦF c-1=21.54 MPa
2) From clau 3.4.9 uniform compression in elements of columns-flat element      supported on both edges
面粉怎么发酵
See <Aluminum Design Manual> (2005) Page I-B-30
Dbr =
=2Bbr
Cbr =
=
3Dbr
Bs =
1+=⎛
Bs Ds =
=100.41Bs
Cs ==
Ds
x r
=
=y r
=
=x λ
y λ
c c
D'=πD 1-c c
Bc-Fcy
S
=
=D'2-c S =
=c-11-c 2-c c 2ΦccFcy ΦF =if λS ,ΦccFcy,if λS ,Φcc(Bc-D'λ),λ⎡⎤⎡
⎤≤<⎢⎥⎢⎥⎣⎦⎣⎦
w
h =
42height/thickness ratio of web
12.0249.79
ΦF c-e =80.45 MPa
4.4.
5.2 The design bending stress
1) From clau 3.4.11 compression in beams, extreme fiber gross
3.4.11公式
ction-tubular shapes
See <Aluminum Design Manual> (2005) Page I-B-36
167.73
where:Cb = 1
-9.02119.75
拍电影
ΦF b-1=30.03 MPa
3.4.14公式
1) From clau 3.4.14 compression in beams, extreme fiber gross
ction-tubular shapes
See <Aluminum Design Manual> (2005) Page I-B-36
OT CHOOSE
NOT CHOOSE where:
Cb = 1
22.053889.86ΦF b-1####
w
w
h t =1-c-e y
Bp-
Fcy c S =
=1.6Dp
ΦΦ1-p 2-c-e k Bp S =
=1.6
Dp
w w
w c-e 1-c-e 2-c-e w
w w w w h h h ΦF =if S ,ΦyFcy,if S ,Φc(Bp-1.6Dp t t t    1.6t ⎡⎤⎡⎢⎥⎢⎢⎥⎢≤<⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣
=2
1-b y Bc-Fcy b S ==1.6Dc Φ⎛⎫ ⎪Φ ⎪ ⎪⎝⎭22-b Cc S ==1.6⎛⎫ ⎪⎝
⎭2
b-11-b 2-b Φb E ΦF =if S ,ΦyFcy,if S ,ΦL S π⎡⎤⎡⎤⎢⎥⎢⎥⎥⎥≤<⎥⎥
⎢⎢⎥⎣⎣
L =1-b y
1.2(Bc-Fcy)b S =
=Dc
ΦΦ2-b S =1.2Cc
=2
b b-11-b 2-b 2b y Φb C E ΦF =if S ,ΦyFcy,if
S ,ΦL 1.2r π⎡
⎤⎡⎤⎢
⎢⎥⎢⎥
⎢⎥≤<⎥
⎥⎛⎫⎥⎥ ⎪⎥
⎥ ⎪⎢⎥⎝⎭⎣⎦⎣
2) From clau 3.4.15 uniform compression in elements of beams-flat elements 件按3.4.15
supported on one edge.
局部稳定性
See <Aluminum Design Manual> (2005) Page I-B-37
14.57width/thickness ratio of flange
3.7715.62
ΦF b-f =76.88 MPa
2) From clau 3.4.16 uniform compression in elements of beams-flat elements
件按3.4.16
supported on bouth edges.
茯神的功效与作用
局部稳定性
See <Aluminum Design Manual> (2005) Page I-B-37
OT CHOOSE
NOT CHOOSE width/thickness ratio of flange 12.0249.79
ΦF b-f ####
3) From clau 3.4.18 compression in elements of beams-(element in bending in
局部稳定性
own plane)-flat elements supported on bouth edges.See <Aluminum Design Manual> (2005) Page I-B-39
42height/thickness ratio of web
-0.4
-1< Co/Cc <1then:
m=1.15+Co/(2Cc)=0.95
28.9981.25
f
f
b =t 1-b-f y
Bp-Fcy b S =
=1.6D p
ΦΦ1-p 2-b-f k Bp S =
=
柳湖
1.6Dp
f f f b-f 1-b-f 2-b-f f
f f f f b
b b ΦF =if S ,ΦyFcy,if
S ,Φb(Bp-1.6Dp t t t    1.6t ⎡⎤⎡⎢⎥⎢⎢⎥
⎢≤<⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣
1-b-f y
Bp-Fcy b S =
=5.1D p
ΦΦ1-p 2-b k Bp S =
=
5.1Dp
f
f
b =
t f f
f b-f 1-b-f 2-b-f f
f f f f b
b b ΦF =if S ,ΦyFcy,if
S ,Φb(Bp-5.1Dp t t t    5.1t ⎡⎤⎡⎢⎥⎢⎢⎥
⎢≤<⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣
w
w
h t =o c
c =c br 1-b-w br
y
B -1.3
Fcy b S =
=mD ΦΦ1-br br 2-b-w
br
k B S ==mD

本文发布于:2023-08-01 09:06:43,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/1104196.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:茯神   网络   面粉   稳定性   功效   流行歌曲
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图