Benefits
l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
l Fully Characterized Capacitance and Avalanche SOA
l Enhanced body diode dV/dt and dI/dt Capability IRFP4368PbF
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET®
Power MOSFET
PD - 97322
TO-247AC
S
D
G
D
IRFP4368PbF
Notes:
Calculated continuous current bad on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. Refer to App Notes (AN-1140). Repetitive rating; pul width limited by max. junction temperature.
Limited by T Jmax , starting T J = 25°C, L = 0.022mH
R G = 25Ω, I AS = 195A, V GS =10V. Part not recommended for u above this value.
I SD ≤ 195A, di/dt ≤ 1740A/µs, V DD ≤ V (BR)DSS , T J ≤ 175°C. Pul width ≤ 400µs; duty cycle ≤ 2%.
C oss eff. (TR) is a fixed capacitance that gives the same charging time
as C oss while V DS is rising from 0 to 80% V DSS .
C oss eff. (ER) is a fixed capacitance that gives the same energy as C oss while V DS is rising from 0 to 80% V DSS .
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994. R θ is measured at T J approximately 90°C.
Static @ T = 25°C (unless otherwi specified)
IRFP4368PbF
Fig 4. Normalized On-Resistance vs. Temperature
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
1.0
10
100
1000
I
D
,
D
r
a
i
n
-
t
o
-令人感动的作文
S
o
u
r起风时
c
e
C
u
r
r
e
n
t
(
A
)
110100
V DS, Drain-to-Source Voltage (V)
100
1000
10000
100000
1E+006
C
,
C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
T J , Junction Temperature (°C)
050100150200250300350400
Q G,Total Gate Charge (nC)
0.0
2.0
东北大学美国4.0
6.0
8.0
10.0
12.0
宁海旅游
V
G
S
遗传素质
,
G
a
t
e
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e
(
V
)
IRFP4368PbF
Fig 10. Drain-to-Source Breakdown Voltage
Fig 11. Typical C OSS Stored Energy
Fig 9. Maximum Drain Current vs. Ca Temperature
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
0.1
1
10
100
1000
I S D , R e v e r s e D r a i n C u r r e n t (A )
T J , Temperature ( °C )
T C , Ca Temperature (°C)
050100150200250300350I D , D r a i n C u r r e n t (A )klia
10
20
30
40
50
60
70
80
V DS, Drain-to-Source Voltage (V)
0.0
1.02.03.04.05.06.0E n e r g y (µJ
)
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
0500
1000
1500
2000E A S , S i n g l e P u l s e A v a l a n c h e E n e r g y (m J )
我战胜了懒惰IRFP4368PbF
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Ca
Fig 14. Typical Avalanche Current vs.Pulwidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:(For further info, e AN-1005 at )1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax . This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded.
3. Equation below bad on circuit and waveforms shown in Figures 16a, 16b.
4. P D (ave) = Average power dissipation per single avalanche pul.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increa during avalanche).
6. I av = Allowable avalanche current.
7. ∆T = Allowable ri in junction temperature, not to exceed T jmax (assumed as 25°C in Figure 14, 15).
t av = Average time in avalanche.D = Duty cycle in avalanche = t av ·f
Z thJC (D, t av ) = Transient thermal resistance, e Figures 13)
P D (ave) = 1/2 ( 1.3·BV·I av ) = D T/ Z thJC
I av = 2D T/ [1.3·BV·Z th ]E AS (AR) = P D (ave)·t av
t 1 , Rectangular Pul Duration (c)
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
0100
200
300
400
500
E A R , A v a l a n c h e E n e r g y (m J )
tav (c)
IRFP4368PbF
利润公式Fig. 17 - Typical Recovery Current vs. di f /dt
Fig 16. Threshold Voltage vs. Temperature
Fig. 19 - Typical Stored Charge vs. di f /dt
Fig. 18 - Typical Recovery Current vs. di f /dt
T J , Temperature ( °C )
V G S (t h ), G a t e t h r e s h o l d V o l t a g e (V )
200
400
600
800
1000
di F /dt (A/µs)
510
15
20
25
30
I R R (A )
200
400
600
800
1000
di F /dt (A/µs)
51015
20
25
30
I R R (A )
200
400
600
800
1000
di F /dt (A/µs)
200
280
360440
5206006807608409201000Q R R (A )
200
400
600
800
1000
di F /dt (A/µs)
200
2803604405206006807608409201000Q R R (A )