GFRP工字梁腹板剪应力分布规律研究

更新时间:2023-07-28 12:39:24 阅读: 评论:0

GFRP工字梁腹板剪应力分布规律研究
张帅;金慧颖;许元兵;刘宗民;毛继泽
【摘 要】At prent, for the purpo of simplifying calculation, glass fiber reinforced plastic ( GFRP ) protruded profiles are usually considered as isotropic materials in the studies on the shear performance of GFRP and concrete composite beams. However, it is unreasonable to u the theoretical formula derived from the isotropic materials di⁃rectly, due to the anisotropy of GFRP. To this end, finite element simulation software ABAQUS was ud to analyze the GFRP I⁃girders compod of different laying modes, and the distribution nephograms of shear stress and the dis⁃tribution regularity along the web of different layers were obtained. The results show that the shear stress distribu⁃tions of ply angle 0°and 90° were parabolic, which are similar to tho of isotropic materials, and layers with other ply angles were quite different. Among tho analysis results, the maximum shear stress in the web is 1.06 times of the average value.%目前,玻璃纤维增强塑料( glass fiber reinforced plastic,GFRP )与混凝土组合梁的抗剪切性能研究中,常直接把GFR
P型材当成各向同性材料来计算,来达到简化计算的目的。然而,GFRP是各向异性材料,计算时直接采用由各向同性材料推导出的公式是偏于不合理的。为此,利用有限元软件ABAQUS,对不同铺设方式的GFRP工字梁进行了数值仿真,输出了腹板中各层层合板的剪应力分布云图,并精确绘制了相应的沿腹板高度的剪应力分布图。研究发现,0°和90°铺层的剪应力分布大致为抛物线,表现出与各向同性材料的相似性,而其他角度的铺层中,剪应力的分布离散性较大。所有的铺设情况中,腹板中的最大剪应力为平均剪应力的1.06倍。
比熊怎么养【期刊名称】《应用科技》
【年(卷),期】2016(043)006
【总页数】5页(P82-86)
【关键词】创新是指玻璃纤维增强塑料;工字梁;腹板;剪应力;分布规律
【作 者】张帅;金慧颖;许元兵;刘宗民;毛继泽
【作者单位】哈尔滨工程大学 航天与建筑工程学院,黑龙江 哈尔滨150001;哈尔滨工程大学 航天与建筑工程学院,黑龙江 哈尔滨150001;哈尔滨工程大学 航天与建筑工程学院,黑龙江 哈尔滨150001;哈尔滨工程大学 航天与建筑工程学院,黑龙江 哈尔滨150001;哈尔滨工程大学 航天与建筑工程学院,黑龙江 哈尔滨150001印度空难
【正文语种】中 文
【中图分类】TU398.9
钢材和混凝土是目前建筑、桥梁等结构中使用的主要建筑材料,而钢材锈蚀是世界各国工程建设与维护中普遍存在的问题。一方面,这不仅影响结构的正常使用和寿命,还会造成大量的安全和事故隐患;另一方面,腐蚀加快了结构的更换周期,造成了巨大的经济损失。因此,由钢材锈蚀所带来的危害和经济损失问题亟待解决[1-2]。近年来,采用耐腐蚀的新型结构材料——纤维增强复合材料(fiber reinforced plastic, FRP)来替换钢材,成为解决以上问题的有效手段之一。FRP 材料是由高性能纤维与基体材料按一定比例经过一定工艺复合形成的一种高性能材料,以其强度高、模量大、耐腐蚀性强和抗疲劳等特点在土木工程实践中得到越来越多的重视和应用[3-4]。目前工程结构中的FRP 主要是指由玻璃纤维(
GFRP)、碳纤维(carbon fiber reinforced polymer,CFRP )和芳纶纤维(aramid fiber reinforced polymer,AFRP)等增强的树脂基复合材料,其中GFRP俗称玻璃钢,其价格最便宜,在建筑中的应用前景也最为广阔。然而,纯GFRP材料在建筑及桥梁工程中的使用仍存在着一些的问题,如前期投入费用大、刚度低、强度利用率低等,导致了其应用和推广受到了限制[5]。在此背景下,GFRP与混凝土的组合结构应势而生。以组合梁为例,既充分利用了GFRP受拉强度高和混凝土抗压强度高的特点,又有效地提升了结构的刚度。
在GFRP与混凝土组合梁中的研究和设计中,腹板发生剪切破坏一直被认为是组合梁在承受弯曲荷载时的主要失效模式之一。GFRP是一种各向异性材料,其基本的工程弹性常数有9个,如果再结合其本身的相关破坏准则,将导致GFRP在设计时计算难度急剧增加。因此,GFRP与混凝土组合梁的抗剪切强度计算还没有一种十分精确并且高效的计算方法。目前大多数学者均将GFRP当作各向同性材料,以减少计算的复杂程度[1,6-8]。关于这种简化方式对腹板中剪应力的传递及分布的影响并没有相关的研究分析,对组合梁抗剪承载力的影响也没有相关的评估。而且,GFRP由于其纤维铺设角度和厚度不同,也会表现出不同的力学性能,导致很难规范其计算方法。
煤气中毒急救措施
在既往的复合材料断裂与失效等问题的分析中,有限元软件ABAQUS作为重要的研究工具得到了广泛的运用。ABAQUS借助于多层壳、实体壳及实体单元可以建立复杂的复合材料模型,这些单元允许叠加各向同性或各向异性材料层,材料方向允许变化,并且ABAQUS提供了多种复合材料的失效准则供选择[9]。
文中基于以上存在的问题,利用ABAQUS对GFRP工字梁进行了仿真分析,研究了不同纤维铺设角度下GFRP工字梁腹板的剪应力分布规律,以期能对GFRP与混凝土组合梁的抗剪切性能研究提供有益的参考。
对于图1所示的组合梁,简化的抗剪切强度计算方法认为,组合梁的剪力均由其腹板承担,混凝土翼板和下部GFRP梁翼缘的抗剪承载力作为安全储备,不参与计算。
腹板中的GFRP型材简化为各向同性的线弹性材料,当腹板中的最大剪应力达到材料的极限剪切强度时,腹板中最大剪应力位置的GFRP会发生剪切破坏[6-8],组合梁失效。按照这个理论,对于腹板能承受的最大剪力可由式(1)~(3)计算给出:
式中:h为腹板高度;b为腹板厚度;τavg为腹板的平均剪应力;τmax为腹板中的最大剪应
力;τgw为腹板材料的剪切破坏应力;v为组合梁抗剪承载力;vu为组合梁的极限抗剪承载力。腹板材料按各向同性材料简化时,k取1.5。
其中,对于组合梁下部的工字梁,单独受力时,腹板中的剪应力的计算公式可由材料力学的相关理论理论给出[10]。
按工字梁计算:
云南大学研究生不考虑工字梁翼缘,按矩形计算:
式中:Q为所求切应力的点所在截面的剪力值;y 为所求切应力的点离截面中性轴的距离。
文中利用ABAQUS软件,通过研究GFRP按各向异性材料建模时腹板剪应力的分布规律,得出参数k的相应的取值变化范围。
假设不考虑混凝土对抗剪承载力的贡献,为简化计算,取计算模型为工字型简支梁,截面如图1所示。跨度为3 m,跨中作用集中力大小为25 kN;横截面尺寸为:H=270 mm,h=250 mm,B=300 mm,b=10 mm;单元类型采用C3D8R,网格尺寸为0.002 m。为防
止应力集中,设置了3个参考点,其中参考点RP-1和RP-2分别和梁两端底部的边线建立约束耦合关系,边界条件加在这2个参考点上,参考点RP-3则作为加载点,与梁顶端中线建立约束耦合关系。有限元计算模型如图2所示。
文中所采用的GFRP材料参数如表1所示,其中,以沿梁长方向为主材料方向,即材料参数中下角标1代表的方向,下角标2代表沿梁宽方向,下角标3代表竖直方向[11]。
共计算了4个模型,GC1材料采用钢材,弹性模量为206 GPa,泊松比为0.3;GC2纤维方向与腹板边平行(或垂直);GC3引入了45°和-45°的铺设角度;GC4则包含非常规的一些铺设角度。每个模型仅改变腹板上层合板的铺设角度,铺设方向均沿腹板厚度方向[12],各模型的纤维角度铺设情况如表2所示。
3.1 GFRP腹板各铺层的剪应力分布云图阿诗玛电影
以GC3为例,腹板上的每一铺层的剪切应力分布云图如图3 所示。
不简单从应力分布云图上可以直观地看出,铺设角度一致的铺层,剪应力的分布相应地表现出了一致性,与铺层所在的位置无关(图3(a)、(e));而铺设角度不同的铺层,剪应力的分布则
完全不同。这也就是说,把各向异性材料简化为各向同性材料时,会带来相当大的计算误差。归根结底,由于复合材料本身的性质,沿纤维方向的各项力学性能与垂直于纤维方向的力学性能相差很大,铺设角度的改变,极大地影响了铺层上的剪应力分布。
3.2 GFRP弯曲剪应力沿腹板高度的分布
朝阳美食
为了确定各模型的k的取值,取各自距支座1/3跨度处的截面,以各自下翼缘与腹板的交接处为腹板高度零点,从该零点朝上翼缘方向为正方向,依次输出腹板上各单元的弯曲剪应力,便可得各模型中各铺层沿腹板高度的弯曲剪应力的分布情况,分别如图47所示。
图4表明,按工字梁的理论计算出的结果与有限元模拟的结果吻合较好,即对于各向同性的梁腹板,弯曲剪应力沿腹板高度方向为抛物线分布,且离中性轴越远的位置,剪应力的值越小,但是最大剪应力和最小剪应力差值不大,且最大剪应力仅为平均剪应力的1.02倍。如果采用传统的组合梁计算方法,不考虑翼缘的抗剪作用,将剪力看作全部由腹板承担而直接采用矩形梁的计算理论计算的话,计算结果与腹板上的真实剪应力的分布偏差相当大。
从图5可以看到,对于0°和90°铺层,弯曲剪应力近似为抛物线分布。其中,铺设角度一致的铺层,PLY-2和PLY-4,PLY-1、PLY-3和PLY-5的剪应力分布基本一致,与铺层所在的位置无关。各层的最大剪应力大小相等,均位于各层的中性轴处。
对于梁GC3,图6反映出0°和90°铺层大致沿抛物线分布,剪应力在与翼缘交接的地方出现突变。而对于45°和-45°铺层,其剪应力值沿腹板高度方向的分布近似为一条直线,而且中性轴附近的位置,弯曲剪应力为0。梁GC3中,最大弯曲剪应力值出现在±45°铺层与翼缘的交界处,约为假设剪力全部由腹板承担计算出的腹板平均剪应力的0.78倍,这个值小于1,说明在这种铺设方式下,工字型截面梁的翼缘承担了不可忽略的剪力。因此,当腹板中有主材料方向与梁长方向成45°或-45°的铺层时,不应忽略翼缘板的抗剪作用。
图7显示了一些非常规铺设角度下的弯曲剪应力沿腹板高度的分布情况,各层的剪应力大小分布情况基本上随腹板高度呈线性变化。铺设角度关于腹板中性层对称的铺层,其弯曲剪应力的分布也大致关于中性层对称。各铺层在梁中性轴附近的弯曲剪应力为0,而最大剪应力出现在各铺层与翼缘交接的位置。对于整个腹板而言,弯曲剪应力最大的位置出现在第2层(PLY-2)与下翼缘交接部位的单元中。

本文发布于:2023-07-28 12:39:24,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/1099858.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:腹板   剪应力   材料   分布   计算   方向   铺设
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图