Fuzzy原理 Fuzzy_Set_Theory

更新时间:2023-07-25 09:56:04 阅读: 评论:0

C  C h a k r a b o r t y , w w w .m y r e a d e r s .i n f o R            Fuzzy Set Theory :  Soft Computing Cour  Lecture 29 – 34,  notes, slides
Fuzzy Set Theory
Soft Computing
Introduction to fuzzy t, topics : classical t theory, fuzzy t
theory, crisp and non-crisp Sets reprentation, capturing uncertainty, examples. Fuzzy membership and graphic interpretation
of fuzzy  ts - small,  prime numbers, universal, finite, infinite,
empty space; Fuzzy Operations -inclusion, comparability, equality,
complement, union, interction, difference; Fuzzy properties
related to union, interction, distributivity, law of excluded middle,
law of contradiction, and cartesian product. Fuzzy relations :
definition, examples, forming fuzzy relations,  projections of fuzzy
中秋节的句子relations,  max-min  and  min-max  compositions.
继配
C  C h a k r a b o r t y , w w w .m y r e a d e r s .i n f o半斤等于多少克
R  Fuzzy Set Theory    Soft Computing
Topics  (Lectures  29, 30, 31, 32, 33, 34      6 hours)
Slides
1. Introduction to fuzzy Set
What is  Fuzzy t? Classical t theory; Fuzzy t theory; Crisp  and Non-crisp Sets :  Reprentation;  Capturing uncertainty, Examples
03-102. Fuzzy t Fuzzy Membership; Graphic interpretation of fuzzy ts : small, prime numbers, universal, finite, infinite, empty space;
淘宝网首页打不开Fuzzy Operations : Inclusion, Comparability, Equality, Complement, Union, Interction,  Difference;
Fuzzy Properties : Related to union – Identity, Idempotence, Associativity, Commutativity ; Related to Interction – Absorption, Identity, Idempotence, Commutativity, Associativity; Additional properties - Distributivity, Law of excluded middle, Law of contradiction; Cartesian  product .
11-32
3. Fuzzy Relations Definition of Fuzzy Relation, examples;
手机内存卡怎么用Forming Fuzzy Relations – Membership matrix, Graphical form; Projections of Fuzzy Relations – first, cond and global;  Max-Min and Min-Max compositions.
茭瓜33-41
4. References
42
02
C  C h a k r a b o r
t y , w w w
.m
单位食堂对联大全y r e a d e r s .i n f o
R
Fuzzy Set Theory
What  is  Fuzzy  Set ?
• The word "fuzzy" means "vagueness ". Fuzziness occurs when the boundary  of  a  piece  of  information  is  not  clear-cut.
宽敞反义词• Fuzzy ts  have  been  introduced  by Lotfi A. Zadeh (1965) as an extension of  the  classical  notion of  t.    •
Classical  t theory allows  the  membership  of  the  elements  in  the t in  binary  terms,  a  bivalent  condition -  an element  either  belongs  or does  not  belong  to  the  t.  Fuzzy  t theory  permits  the gradual  asssment  of  the  membership of elements in a t, described with  the aid of a membership function valued  in  the  real  unit  interval [0, 1].  •
Example:  Words  like  young,  tall,  good ,  or  high  are  fuzzy.  − There  is  no  single  quantitative value  which defines  the term young.  − For  some people,  age 25 is young, and  for others, age 35  is  young.  − The  concept  young  has  no  clean  boundary.  − Age 1  is  definitely  young  and  age 100  is  definitely  not  young;  − Age 35  has some possibility of being young and usually depends on  the  context  in  which  it  is  being  considered. 03
C  C h a
k r a b
o r t y , w
w w
.m y r e a d e r s .i n f o
R
SC - Fuzzy t theory - Introduction
1. Introduction  In  real  world,  there  exists  much  fuzzy  knowledge;  Knowledge that is vague, impreci, uncertain, ambiguous, inexact , or probabilistic  in nature.  Human  thinking  and  reasoning  frequently  involve fuzzy  information, originating from inherently inexact human concepts. Humans, can give satisfactory  answers,  which  are  probably  true.  However,  our  systems  are  unable to answer many questions. The reason is,  most systems  are  designed  bad  upon  classical  t theory  and two-valued logic  which  is  unable  to  cope  with  unreliable  and  incomplete information  and  give  expert  opinions.  We want, our systems should also be able to cope with unreliable and incomplete information and give expert opinions. Fuzzy ts  have  been able  provide  solutions  to  many  real  world  problems.  Fuzzy  Set  theory  is  an  extension  of  classical  t  theory  where  elements have  degrees  of  membership.  04
C
C h a k r a b o r t y , w
w w .m y r e a d e r s .i n f o
R SC - Fuzzy t theory - Introduction  • Classical Set Theory A  Set  is  any  well  defined  collection  of  objects.  An  object  in a  t  is
called  an  element  or  member  of  that  t.
− Sets are defined by a simple statement  describing  whether a particular element having a certain property belongs to that particular  t.
− Classical  t  theory  enumerates  all  its  elements  using
A = { a 1 ,  a 2 ,  a 3 ,  a 4 ,  . . . .  a n  }
If the elements  a i  (i =  1, 2, 3, . . .  n )  of  a  t  A  are  subt  of universal  t  X ,  then  t  A  can  be reprented  for  all  elements x ∈ X  by  its  characteristic function
1  if    x ∈  X
µA  (x) =
0  otherwi
−    A  t  A  is  well  described  by  a  function  called  characteristic
function .
This  function, defined  on  the universal space X , assumes :
a  value  of  1  for  tho  elements  x  that belong to t A ,  and    a  value  of  0  for  tho  elements  x  that do not belong to t A . The  notations  ud  to  express  the  mathematically  are
Α : Χ → [0, 1]    A(x)  = 1 ,  x  is a member of A                Eq.(1)
A(x)  = 0 ,  x  is not a member of A
Alternatively,  the t  A  can be  reprented  for  all elements  x ∈ X by its  characteristic function    µA  (x)  defined as
1    if    x ∈ X
µA  (x) =                                              Eq.(2)
0    otherwi
− Thus  in  classical t theory  µA  (x)  has  only  the values 0('fal') and 1 ('true'').  Such ts are called  crisp ts.
05

本文发布于:2023-07-25 09:56:04,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/1095903.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:食堂   对联   单位
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图