广东西洋菜
Using the graphical ur interface to define the complex geometry of a wrench, generate a mesh, and analyze it for a given load configuration.
Defining and Solving PDEs
With the Partial Differential Equation Toolbox, you can define and numerically solve different types of PDEs, including elliptic, parabolic, hyperbolic, eigenvalue, nonlinear elliptic, and systems of PDEs with multiple variables.
Elliptic PDE
The basic scalar equation of the toolbox is the elliptic PDE
where is the vector, and c is a 2-by-2 matrix function on,the bounded planar domain of interest.c,a, and f can be complex valued functions of x and y.
Parabolic, Hyperbolic, and Eigenvalue PDEs
The toolbox can also handle the parabolic PDE印彩霞
the hyperbolic PDE
名不符实
and the eigenvalue PDE
where d is a complex valued function on and is the eigenvalue. For parabolic and hyperbolic PDEs,c,a,f, and d can be complex valued functions of x,y, and t.
Nonlinear Elliptic PDE
A nonlinear Newton solver is available for the nonlinear elliptic PDE
where the coefficients defining c,a, and f can be functions of x,y, and the unknown solution u. All solvers can handle the PDE system with multiple dependent variables
You can handle systems of dimension two from the graphical ur interface. An arbitrary number of dimensions can be handled from the command line. The toolbox also provides an adaptive mesh refinement algorithm for elliptic and nonlinear elliptic PDE problems.银行卡怎么销户
Handling Boundary Conditions人教版化学必修一
The following boundary conditions can be handled for scalar u:
▪Dirichlet:
on the boundary
▪Generalized Neumann:
on
where
is the outward unit normal and g,q,h, and r can be complex valued functions of x and y defined on
. For the nonlinear PDE, the coefficients may depend on u. For time-dependent problems, the coefficients may also depend on t. For PDE systems, Dirichlet, generalized Neumann, and mixed boundary conditions are supported.
Visualization tools provide multiple ways to plot results. A contour plot with gradient arrows shows the temperature and heat flux. The temperature gradient is displayed using 3-D plotting tools.
Toolbox Application Modes
The Partial Differential Equation Toolbox graphical interface includes a t of application modes for common engineering and science problems. When you lect a mode, PDE coefficients are replaced with
application-specific parameters, such as Young’s modulus for problems in structural mechanics. Available modes include:
▪Structural Mechanics - Plane Stress
▪Structural Mechanics - Plane Strain
▪Electrostatics
▪Magnetostatics
饿了么电话客服▪AC Power Electromagnetics
Product Details, Examples, and System Requirements
/products/pde
Trial Software
/trialrequest
Sales唱歌跑调怎么办
/contactsales
Technical Support
/support ▪Conductive Media DC
农行小额贷款▪Heat Transfer
▪Diffusion
The boundary conditions are altered to reflect the physical meaning of the different boundary condition coefficients. The plotting tools let you visualize the relevant physical variables for the lected application.
Resources
Online Ur Community /matlabcentral Training Services /training Third-Party Products and Services /connections Worldwide Contacts /contact