Bibliography
孝歌歌词
Aloimonos,Y.:1988,Visual shape computing,Proceedings of IEEE,Vol.76pp.899–916. Attneave,F.:1954,Some informational aspects of visual perception,Psychophysical Review, Vol.61pp.183–193.
Barkai,N.,Seung,H.and Sompolinksy,H.:1993,Scaling laws in learning of classification tasks,Physical Review Letters70(20),3167–3170.
Bartolini,L.,Ciaccia,P.and Patella,M.:2005,WARP:Accurate retrieval of shapes using pha of Fourier descriptors and time warping distance,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.27,Jan pp.142–147.
Basri,R.,Costa,L.,Geiger,D.and Jacobs,D.:1998,Determining the similarity of deformable shapes,Vision Rearch,Vol.38pp.2365–2385.
Belkasim,S.O.,Shridhar,M.and Ahmadi,M.:1991,Pattern recognition with moment invari-ants:A comparative study and new results,Pattern Recognition,Vol.24pp.1117–1138. Belongie,S.,Malik,J.and Puzicha,J.:2002,Shape matching and object recognition using shape contexts,IEEE Transaction on Pattern Analysis and Machine Intelligence,Vol.24,No.
24pp.509–522.
Biederman,I.:1987,Recognition-by-components:A theory of human image understanding, Psychophysical Review,Vol.94(2),115–147.
Biehl,M.and Caticha,N.:2003,The statistical mechanics of on-line learning and general-ization,in M.Arbib(ed.),The Handbook of Brain Theory and Neural Networks,MIT Press, Cambridge,MA,pp.1095–1098.
Biehl,M.,Freking,A.and Reents,G.:1997,Dynamics of on-line competitive learning,Euro-physics Letters38(1),73–78.
Biehl,M.,Ghosh,A.and Hammer,B.:2005,The dynamics of learning vector quantization,in M.Verleyn(ed.),European Symposium on Artificial Neural Networks,ESANN’05,d-side, Evere,Belgium,pp.13–18.
Blum,H.:1967,A transformation for extracting new descriptors of shape,In Whaten-Dunn, editor,Models for the perception of speech and visual forms,MIT Press pp.362–380.
Bojer,T.,Hammer,B.and Koers,C.:2003,Monitoring technical systems with prototype bad clustering,
in M.Verleyn(ed.),European Symposium on Artificial Neural Networks,d-side,Evere,Belgium,pp.433–439.
Bottou,L.:1991,Stochastic gradient learning in neural networks.,Proc.of Neuro-Nimes91, EC2editions.
128BIBLIOGRAPHY Brady,M.:1983,Criteria for reprentations of shape,In J.Beck,B.Hope and A.Ronfeld,
editors,Human and Machine Vision,Academic Press pp.39–84.
Burt,P.J.:1988,Smart nsing with a pyramid vision machine,Proceedings of IEEE,Vol.76, No.8pp.1006–1015.
Chihman,V.,Bondarko,V.,Shelpin,Y.and Danilova,M.:2004,Fragmentalfigure perception, Perception.Vol.33Supplement p.76a.
Chuang,G.C.-H.and Kuo,J.:1996,Wavelet descriptor of planar curves:theory and applica-tion,IEEE Transactions on Image Processing,Vol.5,Jan pp.56–70.
Crammer,K.,Gilad-Bachrach,R.,Navot,A.and Tishby,A.:2003,Margin analysis of the LVQ algorithm.,in S.Becker,S.Thrun and K.Obermayer(eds),Advances in Neural Information Processing Systems,Vol.15,MIT Press,Cambridge,MA,pp.462–469.
Cross,A.D.J.and Hancock,E.R.:1998,Graph matching with a dual-step EM algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.20,Nov pp.1236–1252. Davis,L.:1986,Two-dimensional shape reprentation,In I.Young and K.S.Fu,editors,Hand-book of Pattern Recognition and Image Processing,Academic Press.pp.233–245.
de Sa,V.R.and Ballard,D.H.:1993,A note on learning vector quantization,in S.Hanson and J.Cowan(eds),Advances in Neural Information Processing Systems,Vol.5,pp.220–227. Duda,R.,Hart,P.and Stork,D.:2000,Pattern Classification,Wiley,New York.
Engel,A.and van den Broeck,C.:2001,The Statistical Mechanics of Learning,Cambridge Uni-versity Press,Cambridge,UK.
Feldman,J.and Singh,M.:2005,Information along contours and object boundaries,Psy-chophysical Review,Vol.112pp.243–252.
Fischer,M.A.and Boles,R.C.:1986,Perceptual organization and curve partitioning,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.8(1),100–105. Foreman,N.P.and Hemmings,R.:1987,The Gollin incompletefigures test:Aflexible,com-puterid version,Perception.Vol.16pp.543–548.
Freking,A.,Reents,G.and Biehl,M.:1996,The dynamics of competitive learning,Europhysics Letters Vol.38pp.73–78.
Gavrila,D.:1998,Multi-feature hierarchical template matching using distance transforms, International Conference on Pattern Recognition(ICPR’98),Brisbane,Australia,pp.439–444.
Ghosh,A.,Biehl,M.,Freking,A.and Reents,G.:2004,A theoretical framework for analysing the dynamics of LVQ:A statistical physics approach,Technical Report2004-9-02,Mathe-matics and Computing Science,University Groningen,P.O.Box800,9700AV Groningen,The Netherlands,available from www.cs.rug.nl/˜biehl.
猪大骨头
Ghosh,A.,Biehl,M.and Hammer,B.:2005,Dynamical analysis of LVQ type learning rules, in M.Cottrell(ed.),Workshop on the Self-Organizing-Map WSOM’05,Univ.de Paris(I). Ghosh,A.and Petkov,N.:2005a,Incomplete contour reprentations and shape descriptors: ICR test studies,Proc.Fi
rst Brain,Vision and Artificial Intelligence BV AI2005, Naples,October19-21,2005,Lecture Notes in Computer Science,Vol.3704,Springer-Verlag Berlin Heidelberg,pp.416–425.
BIBLIOGRAPHY129 Ghosh,A.and Petkov,N.:2005b,Robustness of shape descriptors to incomplete contour reprentations,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.27
(11),1793–1804.
Gollin,E.:1960,Developmental studies of visual recognition of incomplete objects,Perceptual and Motor Skills.Vol.11pp.289–298.
Goshtaby,A.:1985,Description and discrimination of planar shapes using shape matrix,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.P AMI-7,Nov.pp.738–743. Grigorescu,C.and Petkov,N.:2003,Distance ts for shapefilters and shape recognition, IEEE Transactions on Image Processing,Vol.12,No.10pp.1274–1286.
Grigorescu,C.,Petkov,N.and Westenberg,M.:2003,Contour detection bad on nonclassical receptivefield inhibition,IEEE Transactions on Image Processing,Vol.12,July pp.729–739. Grigorescu,C.,Petkov,N.and Westenberg,M.A.:2004,Contour and boundary detection improved by surround suppression of texture edges,Image Vision and Computing,Vol.22 pp.609–622.
Hammer,B.,Strickert,M.and Villmann,T.:2005a,On the generalization ability of GRLVQ networks,Neural Processing Letters21(2),109–120.
糊辣汤
Hammer,B.,Strickert,M.and Villmann,T.:2005b,Prototype bad recognition of splice sites,in U.Seiffert,L.C.Jain and P.Schweitzer(eds),Bioinformatics using Computational Intelligence Paradigms,Springer,Berlin,pp.25–55.
Hammer,B.,Strickert,M.and Villmann,T.:2005c,Supervid neural gas with general simi-larity measure,Neural Processing Letters21(1),21–44.祭十二郎文原文及翻译
Hammer,B.and Villmann,T.:2002,Generalized relevance learning vector quantization,Neu-ral Networks15(8-9),1059–1068.
Huttenlocher,D.,Klanderman,G.and Rucklidge,W.:1993,Comparing images using Haus-dorff distance,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.15,Sept pp.850–863.
Huttenlocher,D.,Lilian,H.and Olson,C.:1999,View-bad recognition using an eigenspace approximation of Hausdorff measure,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.21,Sept pp.951–955.
Koenderink,J.J.and van Doorn,A.J.:1978,Visual detection of spatial contrast;influence of location in the visualfield,target extent and illuminance level,Biological Cybernatics pp.157–167.
Kohonen,T.:1990,Improved versions of learning vector quantization,In Proc.of the Interna-tional Joint conference on Neural Networks(San Diego,1990)1,545–550.
Kohonen,T.:1995,Learning vector quantization,in M.Arbib(ed.),The Handbook of Brain Theory and Neural Networks.,MIT Press,Cambridge,MA,pp.537–540.
Kohonen,T.:1997,Self-Organizing Maps,Springer,Berlin.
Kohonen,T.,Barna,G.and Chrisley,R.:1988,Statistical pattern recognition with neural net-work:Benchmarking studies.,Proc.of the IEEE cond international conference on Neural Networks(San Diego,1988),Vol.1,IEEE,New York,pp.61–68.
130BIBLIOGRAPHY Kuncheva,L.I.:2004,Classifier enmbles for changing environments,in F.Roli,J.Kittler and T.Windeatt(eds),Multiple Classifier Systems:5th International Workshop,MCS2004, Cagliari,Italy,Vol.3077of Lecture Notes in Computer Science,Springer,Berlin,pp.1–15. Latecki,L.and Lak¨a mper,R.:2000,Shape similarity measure bad
on correspondence of vi-sual parts,IEEE Transactions on Pattern Analysis and Machine Intelligence.Vol.22pp.1185–1190.
Latecki,L.,Lak¨a mper,R.and Eckhardt,U.:1998,Shape descriptors for non-rigid shapes with single clod contour,In Proc.of Computer Vision and Pattern Recognition pp.424–429.
Loncaric,S.:1998,A survey of shape analysis techniques,Pattern Recognition,Vol.31,No.8 pp.983–1001.
Marangi,C.,Biehl,M.and Solla,S.:1995,Supervid learning from clustered input examples, Europhysics Letters30(2),117.
Marr,D.and Nishihara,H.:1978,Reprentation and recognition of the spatial organization of three dimensional shapes,In Proc.Roy.Soc.London,B.,Vol.200pp.269–294.
Meir,R.:1995,Empirical risk minimization versus maximum-likelihood estimation:a ca study,Neural Computation7(1),144–157.
Mokhtarian,F.and Mackworth,A.:1992,A theory of multiscale,curvature-bad shape rep-rentation for planar curves,IEEE Transactions on Pattern Analysis and Machine Intelli-gence,Vol.14,No.8pp.78
9–805.
Nagy,G.:2000,Twenty years of document image analysis in PAMI,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.22,Jan pp.38–62.
Neural Networks Rearch Centre,Helsinki:2002,Bibliography on the lf-organizing maps (SOM)and learning vector quantization(LVQ),Otaniemi:Helsinki Univ.of Technology.
Available on-line:liinwww.ira.uka.de/bibliography/Neural/SOM.LVQ.html.
Opper,M.and Kinzel,W.:n.d.,Physics of neural network,edited by J.S.van Hemmen,E.
Domany,and K.Schulten(Springer-Verlag,Berlin,to be published).
Papadimitroiou,C.and Stieglitz,K.:1982,Combinatorial optimization,Englewood Cliffs, NJ:Prentice-Hall.
Pavlidis,T.:1980,Algorithms for shape analysis of contours and waveforms,IEEE Transac-tions on Pattern Analysis and Machine Intelligence,Vol.2pp.301–312.
Peleg,S.and Ronfeld,A.:1981,A min-max medial axis transformation,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.3pp.208–210.
Petkov,N.:2003,Algorithm for the cost of an optimal assignment of two ts of real numbers, Technical report,2003-9-07,Institute of Mathematics and Computing Science,University of Groningen.
Petrakis,E.G.M.,Diplaros,A.and Milios,E.:2002,Matching and retrieval of distorted and occluded shapes using dynamic programming,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.24,Nov pp.1501–1516.
BIBLIOGRAPHY131 Pregenzer,M.,Pfurtscheller,G.and Flotzinger,D.:1996,Automated feature lection with
distinction nsitive learning vector quantization,Neurocomputing11,19–20. Prokop,R.J.and Reeves,A.P.:1992,A survey of moment-bad techniques for unoccluded object reprentation and recognition,CVGIP:Graphical Models and Image Processing,Vol.
54pp.438–460.
Reents,G.and Urbanczik,R.:1998,Self-averaging and on-line learning,Physical Review Let-ters80(24),5445–5448.
Riegler,P.,Biehl,M.,Solla,S.and Marangi,C.:1996,On-line learning from clustered input examples,in M.Marinaro and R.Tagliaferri(eds),Neural Nets WIRN Vietri-95,Proc.of the7th Italian Workshop on Neural Nets,World Scientific,Singapore,pp.87–92.
Saad,D.(ed.):1999,Online learning in neural networks,Cambridge University Press,Cam-bridge,UK.
Sato,A.and Yamada,K.:1995,Generalized learning vector quantization,in G.Tesauro,
刀倒吊着绕口令D.Touretzky and T.Leen(eds),Advances in Neural Information Processing Systems,Vol.7,
pp.423–429.十大刑事案件
Sato,A.and Yamada,K.:1998,An analysis of convergence in generalized LVQ,in L.Niklas-son,M.Bod´e n and T.Ziemke(eds),International Conference on Artificial Neural Networks, ICANN’98,Springer,Berlin,pp.172–176.
Schleif,F.-M.,Villmann,T.and Hammer,B.:2006,Local metric adaptation for soft nearest prototype clas
南澳岛旅游景点大全sification to classify proteomic data,in I.Bloch,A.Petrosino and A.Tet-tamanzi(eds),International Workshop on Fuzzy Logic and Applications,Vol.3849of Lecture Notes in Computer Science,Springer,Berlin,pp.290–296.
Sebastian,T.B.,Klein,P.N.and Kimia,B.B.:2003,On aligning curves,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.25,Jan pp.116–125.
Seo,S.,Bode,M.and Obermayer,K.:2003,Soft nearest prototype classification,IEEE Transac-tions on Neural Networks14(2),390–398.小米手环怎么用
Seo,S.and Obermayer,K.:2003,Soft learning vector quantization.,Neural Computation 15,1589–1604.
Shelepin,Y.,Vahromeeva,O.,Harauzov,A.,Pronin,S.,Foreman,N.and Chihman,V.:2004, Recognition of incomplete contour and half-tonefigures,Perception.Vol.33Supplement p.85c.
Sommervuo,P.and Kohonen,T.:1999,Self-organizing maps and learning vector quantization for feature quences,Neural Processing Letters10(2),151–159.
Veltkamp,R.and Hagedoorn,M.:1999,State of the art in shape matching,Technical Report UU-CS-19
99-27,Utrecht University.
Villmann,T.,Merenyi,E.and Hammer,B.:2003,Neural maps in remote nsing image anal-ysis,Neural Networks16(3-4),389–403.
Watkin,T.H.L.,Rau,A.and Biehl,M.:1993,The statistical mechanics of learning a rule, Reviews of Modern Physics65,499–556.
132BIBLIOGRAPHY Wu,W.Y.:2003,An adaptive method for detecting dominant points.,Pattern Recognition,Vol.
36(10),2231–2237.
Zhang,D.and Lu,G.:2004,Review of shape reprentaion and description techniques,Pat-tern Recognition,Vol.37pp.1–19.