哈尔滨工业大学工程硕士学位论文
摘要
随着我国国民经济的迅猛发展,作为传统支柱产业的纺织工业进入高速发展时期,同时也带动了重要的萘系染料中间体—H酸生产企业的快速发展。但是在H 酸生产过程中产生了大量高浓度、高盐度、难生物降解的废水,若不经处理直接排放,将对环境造成严重污染,对人体产生极大危害。因此对H酸废水的处理和研究具有重要学术意义和应用价值。
本文采用络合萃取法处理高浓度H酸废水,建立了错流萃取工艺体系,对初始COD为35000 mg/L,pH为2.3的H酸废水进行了研究。考察了萃取体系、萃取时间、萃取级数、萃取剂浓度、相比(A/O)和萃取温度对H酸废水COD值去除效果的影响。得到最优萃取体系为:三辛胺为络合剂,煤油为稀释剂,正辛醇为助溶剂。以三辛胺/煤油/正辛醇体系进行萃取实验,得到最优工艺参数为:V(三辛胺)/ V(煤油)为1/4、相比(A/O)为5/1、pH为2.3、萃取时间为30 min,经2级萃取后COD去除率可达到83.4%。通过响应面分析法建立了错流萃取的参数模型,经方差分析和响应面分析预测验证最优参数具有可靠性,并且萃取时间、萃取剂浓度和相比对萃余液COD去除率影响顺序为:相比>萃取时间>萃取剂浓度。
采用混合澄清萃取槽进行逆流络合萃取实验,建立了逆流萃取工艺体系,对初始COD值为7000 mg/L的H酸废水进行了研究。考察了水力停留时间、萃取剂浓度和相比对COD去除效果的影响。得到最优工艺
参数为:水力停留时间为8 min、V(三辛胺)/ V(煤油)为1/6、相比(A/O)为5/1,经3级逆流萃取后COD去除率可达到77.5%。通过响应面分析法建立了逆流萃取的参数模型,经方差分析和响应面分析预测验证最优参数具有可靠性。并且水力停留时间、萃取剂浓度和相比对萃余液COD去除率影响顺序为:相比>水力停留时间>萃取剂浓度。
建立了对萃取相和萃余相的再生及其资源化体系。对于萃取相,采用12.5%的NaOH溶液对萃取相进行反萃取。采用油碱比为2/1时,经6次重复实验再生萃取剂回收率均在89%-91%之间,COD的去除率为42.8%,再生萃取剂可循环利用。对于萃余相,结晶后经风干可回收硫酸钠固体,其纯度约为100%。采用傅立叶变换红外色谱(FTIR)分析技术,对三辛胺络合萃取H酸的过程进行机理研究。结果表明,三辛胺络合萃取H酸是吸热反应,以离子成盐的方式,1个三辛胺分子与1个H酸分子进行缔合反应,形成的萃合物组成为1:1。
关键词:络合萃取,H酸,响应面分析,反萃取,资源化
赵襄子饮酒
哈尔滨工业大学工程硕士学位论文
Abstract
With the rapid development of China's national economy, the textile industry as the traditional pillar i
ndustry has entered a stage of rapid development, and led the important naphthalene dyes intermediate of H-acid production enterpris in the rapid development. However, in the process of production of H-acid has produced a large number of wastewater with high concentrations, high salinity and it is difficult to biodegrade, If we emissions the wastewater directly with nothing treatment that will cau rious pollution to the environment and extremely harmful to the human body. So it has important academic significance and application value of the treatment and rearch of H-acid wastewater.
In this paper, the high concentration of H acid wastewater was treated by complex extraction method, and the cross-flow extraction process system was established. The wastewater of H-acid with initial COD of 35000 mg/L and pH of 2.3 was studied by cross-flow extraction. The extraction system, the extraction time, the extraction stages, the extractant concentration, the pha ratio and the extraction temperature on the removal efficiency of COD are investigated. The best extraction system are as follows: TOA as extractant, kerone as diluent and octanol as cosolvent.Under the TOA/kerone/octanol extraction system,the optimum process parameters were the volume ratio of TOA and kerone of 1/4, pha ratio (A/O) of 5/1, pH of 2.3, extraction time of 30 minutes. The overall CODcr removal rate can reach 83.4% by the two-stage extraction. The parameters of the cro
ss-flow extraction were established by respon surface analysis method , the variance analysis and respon surface analysis were ud to verify that the optimal parameters were reliable and the extraction time, extractant concentration and the pha ratio on the removal efficiency of COD were as follows: extraction time>extractant concentration>the pha ratio.
The countercurrent complexation extraction technology was established by using the mixed clarification extraction tank and the countercurrent extraction process system was established. The H-acid wastewater with the initial COD value of 7000 mg/L was studied. The hydraulic retention time, the extractant concentration and the pha ratio on the removal efficiency of COD are investigated. the optimum process parameters were hydraulic retention time of 8 minutes, the volume ratio of TOA and kerone of 1/6 and pha ratio (A/O) of 5/1.The overall CODcr removal rate can reach 77.5% by the
哈尔滨工业大学工程硕士学位论文
countercurrent extraction. The parameters of the countercurrent extraction were established by respon surface analysis method , the variance analysis and respon surface analysis were ud to verify that the optimal parameters were reliable and the hydraulic retention time, extractant conce
ntration and the pha ratio on the removal efficiency of COD were as follows: hydraulic retention time>extractant concentration>the pha ratio.
The regeneration and extraction system of extraction pha and raffinate pha were established. For the phae of extraction, 12.5% NaOH solution was ud to back-extraction on the extraction pha.Using the ratio of oil-ba was 2/1 and with six times of repeated regenerative experiments that the recoveries of the extractant was 89% -91%, and the removal rate of COD was 42.8%. The renewable extractant can be recycled. For the pha of raffinate,we can recover the solid of sulfate after crystallization by air-dried,the purity of Na2SO4 is 100%. The mechanism of extraction of H-acid by TOA with the fourier transform infrared spectroscopy (FTIR) was studied.The results showed that the extraction of H-acid by TOA was an endothermic reaction. In the form of ion salt, one TOA molecule was associated with one H-acid molecule and the composition consisted of 1: 1.
Keywords:Complex extraction, H-acid, respon surface analysis, back-extraction, reutilization杨姓
哈尔滨工业大学工程硕士学位论文
目录
摘要 ............................................................................................................................... I I 第1章绪论 . (1)
1.1 课题来源、课题背景及研究的目的和意义 (1)
1.1.1 课题来源 (1)
1.1.2 课题背景及研究的目的和意义 (1)
1.2 国内外研究现状 (2)
1.2.1 H酸生产工艺及废水来源 (2)
1.2.2 H酸废水的研究现状 (3)
敷衍意思1.2.3 H酸废水资源化处理的研究现状 (9)
1.2.4 络合萃取技术研究现状 (10)
1.3 主要研究内容 (12)
第2章实验材料与方法 (15)
2.1 实验仪器与试剂 (15)
2.1.1 实验仪器 (15)
2.1.2 实验试剂 (15)
鹃组词语
2.1.3 实验装置与设备 (16)
2.2 实验方法 (17)
2.2.1 实验设计与方法 (17)
2.2.2 产物的表征方法 (19)
2.2.3 评价指标 (20)
第3章错流萃取法处理H酸废水的工艺研究 (21)
3.1 引言 (21)
3.2 错流萃取工艺体系的构建 (21)
3.2.1 错流萃取工艺的原理 (21)
3.2.2 萃取体系的选择 (22)
3.3 错流萃取法处理H酸废水的条件优化 (23)
3.3.1 萃取时间对错流萃取的影响 (23)
关于离别的古诗3.3.2 萃取级数对错流萃取的影响 (24)
3.3.3 萃取剂浓度对错流萃取的影响 (24)
3.3.4 相比对错流萃取的影响 (26)
哈尔滨工业大学工程硕士学位论文
3.3.5 萃取温度对错流萃取的影响 (27)
边缘的近义词3.4 响应面分析法对错流萃取影响因素的分析 (28)
3.4.1 方差分析 (28)
3.4.2 响应面分析 (30)
3.4.3 实验结果的验证 (34)
a拼音写法3.5 本章小结 (34)
第4章逆流萃取法处理H酸废水的工艺研究 (35)
4.1 引言 (35)
4.2 逆流萃取工艺体系的构建 (35)
4.2.1 逆流萃取的基本原理 (35)
4.2.2 蠕动泵转速与两相流速的关系 (36)
4.3 逆流萃取法处理H酸废水的条件优化 (37)
4.3.1 水力停留时间对逆流萃取的影响 (37)
作文过年
4.3.2 萃取剂浓度对逆流萃取的影响 (38)
4.3.3 相比对逆流萃取的影响 (38)
4.4 响应面分析法对逆流萃取影响因素的分析 (39)
4.4.1 方差分析 (39)
4.4.2 响应面分析 (41)
4.4.3 实验结果的验证 (45)
4.5 本章小结 (45)
第5章络合萃取法处理H酸废水的资源化及机理研究 (47)
5.1 引言 (47)
5.2 络合萃取法处理H酸废水的资源化 (47)
5.2.1 萃取剂的反萃取 (47)
5.2.2 萃取剂的回收率 (48)
5.2.3 硫酸钠纯度的测定 (49)
5.3 络合萃取法处理H酸废水的机理分析 (49)
5.3.1 萃取平衡线 (49)
5.3.2 萃取反应热的计算 (50)
5.3.3 萃合物组成的分析 (51)
5.3.4 萃合物结构及缔结机理研究 (52)
5.4 本章小结 (53)
结论 (55)
参考文献 (57)