numpy.random.shuffle 打乱顺序函数
在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数:
之前卑鄙陋寡闻,不知道这个⽤法,按照字⾯上的意思是打乱,那么这⾥就应该是让训练数据集中的数据打乱顺序,然后⼀个挨着⼀个地(for i in indices)⽣成训练数据对。下⾯就从docs.scipy 中查到的random.shuffle 的⽤法:
numpy.random. shuffle ( x )
牛腩肉
Modify a quence in-place by shuffling its contents.
Parameters:会议流程
x : array_like The array or list to be shuffled.Returns:None
举例
python>>>
>>> arr = np .arange(10)出租电动车
>>> np .random .shuffle(arr)
活字印刷是谁发明的>>> arr
[1 7 5 2 9 4 3 6 0 8]数鸭子音乐教案
This function only shuffles the array along the first index of a multi-dimensional array (多维矩阵中,只对第⼀维(⾏)做打乱顺序操作):python>>>她在我心
>>> arr = np .arange(9).reshape((3, 3))
>>> np .random .shuffle(arr)
>>> arr
巴黎圣母院的敲钟人array([[3, 4, 5],
[6, 7, 8],
[0, 1, 2]])This function only shuffles the array along the first index of a multi-dimensional array:[python]
个税完税证明
1. def gen_data(source):
2. while True:
3. indices = range(len(source.images)) # indices = the number of images in the source data t
4. random.shuffle(indices)
5. for i in indices:
6. image = np.reshape(source.images[i], (28, 28, 1))
7. label = source.labels[i]
8. yield image, label