PostgreSQL监控指标
数据库版本:9.3.1(不同版本数据库相关表列名可能略有不同)
数据库状态信息
数据库状态信息主要体现数据库的当前状态
1.⽬前客户端的连接数
postgres=#SELECT count(*) FROM pg_stat_activity WHERE NOT pid=pg_backend_pid();
2.连接状态
postgres=#SELECT pid,waiting,current_timestamp- least(query_start,xact_start) AS runtime,substr(query,1,25) AS current_query
FROM pg_stat_activity WHERE NOT pid=pg_backend_pid();
pid | waiting | runtime | current_query
------+---------+-----------------+-----------------------
9381| f |00:01:24.425487|lect*from orders;
可以查看每个连接的pid,执⾏的操作,是否发⽣等待,根据查询,或者事务统计开始时间等等。有多少个链接查询就有多少⾏ 所以可以⽤order by,limit限制查询⾏数
3.数据库占⽤空间
postgres=#lect pg_size_pretty(pg_databa_size('postgres'));
⼀个数据库数据⽂件对应存储在以这个数据库PID命名的⽂件中,通过统计所有以PID命名⽂件的总⼤⼩,也可以得出这个数据库占⽤的空间。
表占⽤的空间使⽤pg_relation_size()查询,对应的系统中的⽂件名和pg_class中的filenode相同,⼀个热点的表最好⼀天⼀统计⼤⼩,获得表的⼀个增长状况,来预测数据库未来可能的增长状况。根据需求提前准备空间应付数据库的增长。
4.等待事件
postgres#SELECT bl.pid AS blocked_pid, a.uname AS blocked_ur, kl.pid AS blocking_pid, ka.uname AS blocking_ur, a.query AS
blocked_statement
FROM pg_locks bl
JOIN pg_stat_activity a ON a.pid = bl.pid
JOIN pg_locks kl ansactionid = bl.transactionid AND kl.pid != bl.pid
JOIN pg_stat_activity ka ON ka.pid = kl.pid WHERE anted;
根据阻塞的语句的会话PID做相应处理
数据库统计信息
1.sql语句统计
实现上述统计需要安装⼀个pg的extension:pg_stat_statements–1.1.sql,调整f:shared_preload_libraries = 'pg_stat_statements',就可以使⽤了
postgres=#SELECT calls, total_time, rows, 100.0* shared_blks_hit /nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent,substr(query,1,25) FROM pg_stat_statements ORDER BY total
_time DESC LIMIT5;
calls | total_time |rows| hit_percent | substr
-------+------------+------+----------------------+---------------------------
1|23.104|17|99.4974874371859296|SELECT n.nspname as Sche
1|21.808|2||lect*from pg_stat_sta
2|5.391|2||SELECT name FROM (SELECT
3|3.307|57|100.0000000000000000|SELECT pg_catalog.quote_i
4|1.318|19|100.0000000000000000|SELECT calls, total_time,
上述查询是按照查询的执⾏时间来排序的,可以定位执⾏⽐较慢的sql,也可以⽤来查出常⽤sql,以及sql共享内存的命中率等信息
2.表的共享内存的利⽤情况统计
实现上述统计需要安装⼀个pg的extension:pg_buffercache–1.0.sql
postgres=#lname, count(*) AS buffers
FROM pg_buffercache b INNER JOIN pg_class c lfilenode = pg_relation_filenode(c.oid)
ldataba IN (0, (SELECT oid FROM pg_databa WHERE datname = current_databa())) GROUP lname ORDER BY2DESC LIMIT 5;
relname | buffers
描写夏雨的诗句--------------------------------+---------
pg_proc |28
pg_attribute |23
怎样申请域名pg_operator |14
pg_proc_proname_args_nsp_index |10
pg_class |9
表在共享内存中占⽤的块数,⽤来查看表是不是在内存中,buffers的单位是数据块,默认8K,如果计算⼤⼩等于表的⼤⼩,说明全表的数据都在缓存中,这时的查询速度是很快的
3.对⼀个表执⾏操作的统计
实现统计对⼀个表操作的偏重,inrt,update,delete的⽐率
postgres=#update products t price=11.00where prod_id=30;
UPDATE1
postgres=#delete from products where prod_id=30;
DELETE1
postgres=#SELECT relname,cast(n_tup_ins AS numeric) / (n_tup_ins + n_tup_upd + n_tup_del) AS ins_pct,
cast(n_tup_upd AS numeric) / (n_tup_ins + n_tup_upd + n_tup_del) AS upd_pct,
cast(n_tup_del AS numeric) / (n_tup_ins + n_tup_upd + n_tup_del) AS del_pct
FROM pg_stat_ur_tables where relname='products';
relname | ins_pct | upd_pct | del_pct
----------+------------------------+------------------------+------------------------
products |0.00000000000000000000|0.50000000000000000000|0.50000000000000000000
4.表的IO和索引的IO
表的IO主要涉及查询的时候查询的逻辑块和物理块,归到底也是命中率的问题,当然最简单的思维⽅式,⼀张表存在内存中的内容越多,相应的查询速度越快。相关视图:pg_stat_ur_tables
相对于表的⼤⼩来说,索引占⽤的空间要⼩的多,所以常⽤的表,可以让其索引⼀直存在内存中,很多时候保持索引的⼀个⾼命中率是⾮常必要的。相关视图:pg_stat_ur_indexes
postgres#SELECT indexrelname,cast(idx_blks_hit as numeric) / (idx_blks_hit + idx_blks_read) AS hit_pct,
idx_blks_hit,idx_blks_read
FROM pg_statio_ur_indexes WHERE (idx_blks_hit + idx_blks_read)>0ORDER BY hit_pct;
5.buffer background 和 checkpoint
涉及检查点写和后台写的⽐率问题,检查点的集中数据写⼊会对数据库IO的性能有很⼤的提升,但相应的需要部分空间存储脏数据,⽽且⼀旦数据库崩溃,内存中未被写⼊磁盘的脏数据越多,数据库恢复时间也就越长,这是⼀个数据库的平衡问题,相关问题在调优⽂档中做深⼊研究。 相关视图:pg_stat_bgwriter
postgres=#SELECT
(100* checkpoints_req) / (checkpoints_timed + checkpoints_req) AS checkpoints_req_pct,
pg_size_pretty(buffers_checkpoint * block_size / (checkpoints_timed + checkpoints_req)) AS avg_checkpoint_write,
pg_size_pretty(block_size * (buffers_checkpoint + buffers_clean + buffers_backend)) AS total_written,
100* buffers_checkpoint / (buffers_checkpoint + buffers_clean + buffers_backend) AS checkpoint_write_pct,
100* buffers_backend / (buffers_checkpoint + buffers_clean + buffers_backend) AS backend_write_pct,*
FROM pg_stat_bgwriter,(SELECT cast(current_tting('block_size') AS integer) AS block_size) AS bs;
系统监控信息
介绍⼀些关于数据库需要查看的系统状态信息
1.数据库基本状态信息
机智的小山羊# ps -ef | grep postgres
# netstat -altunp | grep 5432
12月9日是什么星座
# pg_controdata摩比思维
pg_controdata命令和psql同在postgres的bin⽬录下,系统命令下查询到最全⾯的数据库快照信息
# top -u postgres
Cpu(s): 1.7%us, 1.0%sy, 0.0%ni, 97.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 2051164k total, 1476536k ud, 574628k free, 239624k buffers
Swap: 2097144k total, 0k ud, 2097144k free, 768676k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
11172 postgres 20 0 709m 34m 33m S 0.0 1.7 0:00.79 postgres
9380 postgres 20 0 167m 5284 2272 S 0.0 0.3 0:00.05 psql
11178 postgres 20 0 709m 5168 4408 S 0.0 0.3 0:00.01 postgres
11179 postgres 20 0 709m 4656 3920 S 0.0 0.2 0:00.01 postgres
# free
total ud free shared buffers cached
奇数是什么
Mem: 2051164 1476032 575132 0 239624 768676
-/+ buffers/cache: 467732 1583432
Swap: 2097144 0 2097144
# iotop -u postgres
Total DISK READ: 0.00 B/s | Total DISK WRITE: 0.00 B/s
11175 be/4 postgres 0.00 B/s 0.00 B/s 0.00 % 0.00 % postgres: logger process
11181 be/4 postgres 0.00 B/s 0.00 B/s 0.00 % 0.00 % postgres: autovacuum launcher process
11178 be/4 postgres 0.00 B/s 0.00 B/s 0.00 % 0.00 % postgres: checkpointer process
11180 be/4 postgres 0.00 B/s 0.00 B/s 0.00 % 0.00 % postgres: wal writer process
11182 be/4 postgres 0.00 B/s 0.00 B/s 0.00 % 0.00 % postgres: stats collector process
11179 be/4 postgres 0.00 B/s 0.00 B/s 0.00 % 0.00 % postgres: writer process
简单分析下top命令,⽤top可以分析出系统的当前总体的负载状况,如上例,总体负载率很低,在io等待率⾼的时候可以使⽤iotop来定位io 具体的进程,top中的VIRT RES 可以看出进程希望获取的内存,和占⽤系统内存的数量,可以根据来判定系统内存的分配情况,内存的值也关联到⼀些参数的设定,如postgres在发⽣检查点之前checkpointer process进程会消耗⽐较⼤的物理内存,直到检查点发⽣后,占⽤的内存才会被释放掉,所以在设置检查点时间的时候也要将内存的占⽤考虑进去。
free总体的表现内存的使⽤情况,buffers和cached在应⽤申请内存的时候会被系统释放掉,所以应⽤实际可以使⽤的内存是free的值加上buffers和cached的。
3.sar做辅助分析
sar类似于快照的⽅式来保存系统过去的信息
# sar
03:40:01 PM CPU %ur %nice %system %iowait %steal %idle
03:50:01 PM all 1.56 0.00 0.68 0.10 0.00 97.67
04:00:02 PM all 1.91 0.00 0.63 0.05 0.00 97.41
Average: all 1.07 0.04 1.95 2.65 0.00 94.29
# sar -r
微信动物头像>我的梦想英语12:40:01 PM kbmemfree kbmemud %memud kbbuffers kbcached kbcommit %commit 12:50:01 PM 567124 1484040 72.35 237596 755720 1426740 34.39
01:10:01 PM 567256 1483908 72.34 237600 755720 1426740 34.39
01:20:01 PM 567132 1484032 72.35 237600 755724 1426740 34.39 Average: 742177 1308987 63.82 195809 669444 1390037 33.51
这些统计信息可以对照性能问题,查看当时的系统状态。