GIWAXSA powerful tool for perovskite photovoltaics

更新时间:2023-07-06 23:11:09 阅读: 评论:0

GIWAXS: A powerful tool for perovskite photovoltaics
Chenyue Wang 1, Chuantian Zuo 2, Qi Chen 1, †, and Liming Ding 2, †
1MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials
Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for
Nanoscience and Technology, Beijing 100190, China
Citation: C Y Wang, C T Zuo, Q Chen, and L M Ding, GIWAXS: A powerful tool for perovskite photovoltaics[J]. J. Semicond., 2021,42(6), 060201. doi/10.1088/1674-4926/42/6/060201
The power conversion efficiency (PCE) for perovskite sol-ar cells (PSCs) now reaches 25.2%[1]. However, the perovskite materials  have  complex  compositions  and  variable  phas,calling for suitable characterization techniques to investigate the  underlying  operation  and  degradation  mec
hanism. Graz-ing-incidence  wide-angle  X-ray  scattering  (GIWAXS) plays  an important role in studying perovskite materials. GIWAXS data are  generally  two-dimensional  diffractograms  containing  dif-fraction  rings  of  different  crystal  planes. Grazing-incidence small-angle  X-ray  scattering  (GISAXS) is  similar  to  GIWAXS,while it has a longer detection distance than that of GIWAXS (Fig. 1(a))[2]. GISAXS enlarges the obrvable spatial range up to 10–100 nm and reduces the measurement nsitivity of crys-tallization, and  it  is  mainly  ud  to  determine  the  morpho-logy of bulk-heterojunction films in nanoscale [3, 4]. Compared to  GISAXS, GIWAXS  is  more  popular  in  perovskite  study. This technique  has  veral  advantages  as  follows: (1) high  signal-to-noi ratio (SNR) and nsitive structural resolution; (2) no-contact and nondestructive probing; (3) abundant structural in-formation; (4) depth  resolution; (5) in-situ  obrvation. Here,we discuss two applications of GIWAXS, i.e., the crystallograph-ic  information  at  steady  state, and  the in-situ  measurement to probe the temporal information. As an important structur-al  parameter  of  perovskite  films, crystallographic  orientation affects  the  optoelectronic  properties  and  materials  stability.The  2D  GIWAXS  diffractogram  prents  the  Debye-Scherrer ring  for  certain  crystallographic  plane, enabling  characteriza-tion of structural orientation of perovskite films. The orienta-tion  degree  for  crystal  planes  can  be  obtained  quantitatively according to the diffraction rings along the azimuth by using Herman’s orientation function.
Quasi-2D  perovskites  receive  attention  due  to  their  vari-able structures, tunable composition, and relatively high stabil-ity. The insulating organic long-chain cations in quasi-2D per-ovskites  can  block  carrier  transport. Suitable  crystal  orienta-tion can enhance the carrier transport in 2D perovskites, thus improving device performance. GIWAXS measurements give in-formation  about  crystal  orientation, it  can  also  tell  the  stack-ing  manner  of  grains  at  different  depths, which  is  esntial for  understanding  the  crystallization  mechanism. For  ex-ample, by  using  GIWAXS, Choi et  al. found  that  the  nucle-ation and crystallization of BA 2MA 3Pb 4I 13 perovskite occurs at the gas-liquid interface during annealing, which results in the vertical alignment of 2D perovskite crystals (Fig. 1(b))[5]. They further regulated the solvent and cation to prepare highly ver-tically  orientated  2D  perovskite  films [6]. Rafael et  al. found that  the  intermediate  solvent  complexes  provide  building blocks  in  the  formation  of  2D  perovskites  according  to  GI-WAXS measurements [7].
High-quality 3D perovskites tend to make strong orienta-tion at certain azimuth angle. GIWAXS results can be ud to evaluate the crystallization quality of 3D perovskite thin films.The  results  can  also  be  ud  to  guide  the  process  optimiza-tion, as  well  as  to  clarify  the  relationship  between  crystallo-graphic orientation and device performance. Zheng et al. regu-lated the preferenti
al orientation of perovskite crystals and im-proved the interfacial carriers transport in the corresponding devices by substituting A-site alkali metal cations [8].
Recently, residual strain was obrved in perovskite films due to the mismatch of the expansion coefficients for the sub-strate and perovskites, which influences the operational stabil-ity and efficiency of perovskite solar cells. Microscopically, the residual  stress  within  the  film  results  from  a  biaxial  stretch-ing of the perovskite lattice in in-plane direction. The shift of corresponding diffraction peaks at different azimuthal angles reveals the lattice tilting and stretching. By depth-resolved GI-WAXS, Zhu et  al. obrved  a  gradient  strain  in  FA-MA  per-ovskite  films  (Fig. 1(c)). The  performance  of  PSCs  was  im-proved  by  reducing  lattice  mismatch  of  the  crystals [9]. Wang et al. replaced A-site cations on the perovskite surface by us-ing OAI post-treatment, forming a “bone-joint” configuration,reducing surface residual stress and thus improving humid-ity and thermal stability of PSCs [10].
In-situ  measurement  is  attractive  in  perovskite  rearch.It provides a rapid approach to track microstructural changes in  perovskite  materials, including  the  crystallization  and aging  process. It  is  the  key  to  unravel  the  kinetics  process of  perovskite  materials. The  formation  process  of  perovskite crystals  is  not  fully  understood  yet. The  film  formation  pro-cess  includes
  liquid-film  gelation  stage  and  crystallization stage. Many  studies  have  shown  that  the  orientation  and pha  structure  of  perovskite  are  already  established  during gelation  stage. The  quality  of  the  perovskite  precursor  film (gel) significantly  affects  the  final  perovskite  film. In-situ  GI-WAXS  provides  information  for  the  composition  evolution during spin-coating process. It also provides guidelines for pre-paration  conditions, such  as  spin  speed  and  time, dripping time  of  anti-solvent, etc. Amassian et  al. have  conducted  a ries  of in-situ  GIWAXS  studies  on  perovskite. They  ob-
Correspondence to: Q Chen, *********** ; L M Ding, ***************Received 22 MARCH 2021.
RESEARCH HIGHLIGHTS Journal of Semiconductors
(2021) 42, 060201
doi: 10.1088/1674-4926/42/6/060201
pha to sol–gel state, and investigated the effect of precurs-or  spin-coating  time  on  PSCs  performance [11]. They  revealed that  Cs + and  Rb + cations  were  able  to  stabilize  the  sol–gel state  and  suppress  the  pha  paration  during  spin-coating (Fig. 1(d))[12, 13].
GIWAXS can also be ud to study the crystallization pro-cess  during  thermal  annealing. Using  the  peak  area  integ-rated by the Debye-Scherrer ring of GIWAXS, all the pha con-tents of perovskites and their evolution during annealing can be deduced, which illustrates the pha transition from inter-mediate  pha  to  perovskite  pha. The  activation  energies for perovskite formation can be determined by using Arrheni-us equation.
Perovskite degradation caud by humidity and heat lim-its the commercialization of PSCs. In conjunction with the mois-ture and temperature controller, the aging process of devices under  different  conditions  can  be  monitored  by  GIWAXS.Through  depth-resolved  characterization, the  physical  and chemical  reactions  at  different  positions  can  be  deduced  by combining with other characterizations, which will reveal the degradation  mechanisms. Kelly et  al. performed  systematic in-situ  GIWAXS  studies  on  perovskite  degradation. They  ob-rved that MAPbI 3 films decompod to a hydrated intermedi-ate  pha  with  PbI 64– octahedra  in  a  humid  environment [14].To further investigate the performance and structure changes of  PSCs  under  hu
midity, they  developed  a  humidity  control-ler  in  conjunction  with I–V  measurement  system  (Fig. 1(e)).The  results  revealed  that  the  decrea  of  performance  res-ults  from  the  electrode  corrosion, rather  than  perovskite  de-composition (Fig. 1(f))[15].
In summary, GIWAXS has been widely ud to reveal the relationship  between  perovskite  crystal  structure  and  device performance. In-situ  GIWAXS can be ud to track the crystalliz-ation process and decomposition process of perovskites. This method  can  help  us  to  develop  stable  and  efficient  per-ovskite solar cells.
Acknowledgements
This  work  was  supported  by  National  Natural  Science Foundation of China (21975028, 22011540377), Beijing Muni-cipal  Science  and  Technology  Project  (Z181100005118002),and Beijing Municipal Natural Science Foundation (JQ19008).L. Ding  thanks  the  National  Key  Rearch  and  Development Program of China (2017YFA0206600) and the National Natur-
(d)
(f)1.61.20.80.40
0.5Max.
Min.
12111098T i m e  (s )
T i m e  (s )
q  (nm −1)7654
12111098q  (nm −1)
7656H
3C
2H
4
300200100
Solvate Disordered colloids
Solvate Disordered colloids
300200100
12111098q  (nm −1)
7654
121110+ 5% Cs
98q  (nm −1)
765
4
1.0Q xy  (Å−1)
1.5
2.0
GIWAXS GISAXS
z x
y k i
q xz
q xy
0.1 m ≈ 2
.0−5.0 m
q z
q
αi
on mp-TiO 2 substrate interface—preferential orientation
Tensile-strain  lm
50 nm 200 nm 500 nm
31.69531.68031.66531.650
1.00.80.6N o r m a l i z e d  p a r a m e t e r s
0.40.200
0.5  1.0  1.5  2.0  2.5  3.0Time (h)
3.5
4.0  4.5
5.0  5.5
6.0
(110)I sc V oc FF PCE
Carrier gas
Water bubblers
Mass  ow controllers
Synchrotron X-ray beam
Sample
chamber
Kapton描写战争的成语
window
Source-measure unit
CCD area detector
0.25
0.50sin 2
φ
0.75
2θ (°)k f
k f
动物园里αf
αf
I−V data
ψ
χ
ios10壁纸ψ
Fig. 1. (Color  online) (a) Schematic  diagram  of  GIWAXS  and  GISAXS. Reproduced  with  permission [2], Copyright  2017, John  Wiley  & Sons  Inc.(b) Schematic diagram of the formation of vertically orientated 2D perovskite. Reproduced with permission [5], Copyright 2018, Nature Publish-ing Group. (c) Gradient strain at different depths in perovskite layer. Reproduced with permission [9], Copyright 2019, Nature Publishing Group.(d) Time-resolved GIWAXS for precursor films with and without K + during spin-coating. Reproduced with permission [13], Copyright 2019, Elvier Inc. (e) Humidity control t-up. (f) Time-dependence for MAPbI 3 (110) peak area and device performance parameters. (e) and (f), reproduced with permission [15], Copyright 2018, American Chemical Society.
2
Journal of Semiconductors    doi: 10.1088/1674-4926/42/6/060201
al Science Foundation of China (51773045, 21772030, 51922032, 21961160720) for financial support. References
Yoo J J, Seo G, Chua M R, et al. Efficient perovskite solar cells via im-proved carrier management. Nature, 2021, 590, 587
[1]
Schlipf J, Müller-Buschbaum P. Structure of organometal halide perovskite films as determined with grazing-incidence X-ray scat-tering methods. Adv Energy Mater, 2017, 7, 1700131
[2]
Rivnay J, Mannsfeld S C B, Miller C E, et al. Quantitative determina-tion of organic miconductor microstructure from the molecu-lar to device scale. Chem Rev, 2012, 112, 5488
[3]
Richter L J, DeLongchamp D M, Amassian A. Morphology develop-ment in solution-procesd functional organic blend films: An in situ viewpoint. Chem Rev, 2017, 117, 6332
[4]
管三
Chen A Z, Shiu M, Ma J H, et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photo-voltaic performance. Nat Commun, 2018, 9, 1336
[5]
Chen A Z, Shiu M, Deng X, et al. Understanding the formation of vertical orientation in two-dimensional metal halide perovskite thin films. Chem Mater, 2019, 31, 1336
[6]
Quintero-Bermudez R, Gold-Parker A, Proppe A H, et al. Composi-tional and orientational control in metal halide perovskites of re-duced dimensionality. Nat Mater, 2018, 17, 900
[7]
Zheng G, Zhu C, Ma J, et al. Manipulation of facet orientation in hy-brid perovskite polycrystalline films by cation cascade. Nat Com-mun, 2018, 9, 2793
[8]
Zhu C, Niu X, Fu Y, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat Commun, 2019, 10, 815
[9]
Wang H, Zhu C, Liu L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv Mater, 2019, 31, 1904408
[10]
Munir R, Sheikh A D, Abdelsamie M, et al. Hybrid perovskite thin-film photovoltaics: In situ diagnostics and importance of the pre-cursor solvate phas. Adv Mater, 2017, 29, 1604113
[11]
凤阳旅游景点有哪些
Wang K, Tang M C, Dang H X, et al. Kinetic stabilization of the sol–gel state in perovskites enables facile processing of high-effi-ciency solar cells. Adv Mater, 2019, 31, 1808357
[12]
Dang H X, Wang K, Ghami M, et al. Multi-cation synergy sup-press pha gregation in mixed-halide perovskites. Joule, 2019, 3, 1746
[13]
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled hu-midity environments using in situ techniques. ACS Nano, 2015, 9, 1955
[14]
Fransishyn K M, Kundu S, Kelly T L. Elucidating the failure mechan-isms of perovskite solar cells in humid environments using in situ grazing-incidence wide-angle X-ray scattering. ACS Energy Lett, 2018, 3, 2127
[15]
Chenyue Wang got his BS from University of
Science and Technology Beijing in 2018. Now
he is a MS student at Beijing Institute of Tech-
nology under the supervision of Professor Qi
Chen. His rearch focus on perovskite sol-
ar cells.
Chuantian Zuo received his PhD in 2018 from
游戏方案National Center for Nanoscience and Techno-
logy (CAS) under the supervision of Professor雾的四字成语
Liming Ding. Then he did postdoctoral re-
arch at CSIRO, Australia. Currently, he is an as-
sistant professor in Liming Ding Group. His re-
arch focus on innovative materials and
devices.
Qi Chen holds BS and MS degrees of Tsinghua
University, and received his PhD degree from
University of California, Los Angeles (UCLA). In
2013–2016, he worked as a postdoc at Califor-
nia Nanosystem Institute (CNSI), UCLA. Now
he is a full professor at Beijing Institute of Tech-
nology. His rearch focus on hybrid materi-
als design, processing and applications in opto-
electronics.
Liming Ding got his PhD from University of Sci-
ence and Technology of China (was a joint stu-
dent at Changchun Institute of Applied Chem-
istry, CAS). He started his rearch on OSCs
and PLEDs in Olle Inganäs Lab in 1998. Later
on, he worked at National Center for Polymer
Rearch, Wright-Patterson Air Force Ba and
Argonne National Lab (USA). He joined Kon-
arka as a Senior Scientist in 2008. In 2010, he
joined National Center for Nanoscience and
Technology as a full professor. His rearch fo-
cus on functional materials and devices. He
is RSC Fellow, the nominator for Xplorer Prize,
and the Associate Editors for Science Bulletin
and Journal of Semiconductors.
Journal of Semiconductors  doi: 10.1088/1674-4926/42/6/0602013搞笑的自动回复

本文发布于:2023-07-06 23:11:09,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/1070832.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:成语   自动   旅游景点   游戏   搞笑   凤阳
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图