空心玻璃微珠轻质高强材料的制备与性能研究
Preparation and properties of a lightweight high-strength material bad on hollow glass microspheres
学科专业:材料学恐龙遗迹园
研究生:申娜娜
指导教师:杨德安教授
天津大学材料科学与工程学院
无双剑姬二零一三年十一月
独创性声明
本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
学位论文作者签名:签字日期:年月日珠海国际赛车场
学位论文版权使用授权书
本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。同意学校向国家有关部门或机构送交论文的复印件和磁盘。
(保密的学位论文在解密后适用本授权说明)
学位论文作者签名:导师签名:
签字日期:年月日签字日期:年月日大数据架构师
摘要
本文采用空心玻璃微珠为主体材料,在尽量不破坏微珠的情况下,制备微珠与微珠直接相连的隔热保温材料。充分利用空气导热率低的优势,同时满足质量轻,保温性能优越的特点,研制轻质高强的隔热保温材料。
由于市售的微珠表面都经过了疏水处理,普通的水基氧化物溶液很难润湿微珠表面,本文采用两种方法进行探索试验,一种是采用溶胶-凝胶法制备乙醇-水基的B2O3-SiO2和P2O5-SiO2溶胶,溶胶润湿微珠,并粘结微珠。研究了烧结温度,溶胶的硼硅比和水硅比对试样性能的影响;另一种是采用氢氟酸腐蚀,高温煅烧或丙烯酸接枝对微珠表面进行亲水性改性,无机磷酸铬铝粘结剂将其粘结。尝试了不同的表面改性方法,研究磷酸铬铝浓度,烧结温度对试样性能的影响。
试验结果表明,采用硼硅溶胶和磷硅溶胶结合微珠制备的试样,表观密度小于0.48 g/cm3,抗压强度最高达到14.9MPa。由于硼硅玻璃的熔点比较低,所以该溶胶结合微珠试样的致密化过程为液相反应烧结过程。综合性能最好的试样为硼硅摩尔比1.08,750°C烧结的H试样,收缩率为3.73%,表观密度为0.43g/cm3,显气孔率为41%,抗压强度为10MPa,导热系数为0.1W/m·K。而磷硅溶胶结合微珠的试样,致密化过程主要靠固相反应。温度升高,固相反应加快,试样的收缩率增加,致密化程度提高,表观密度增加。显气孔率受致密化程度以及微珠本身性能的影响,同时,致密化程度和显气孔率对试样的抗压强度作用明显。
氢氟酸腐蚀改性得到的微珠亲水性最好,制得试样的表观密度为0.4~0.5 g/cm3,显气孔率为30~40% ,抗压强度最高达到13MPa 。
关键字:空心玻璃微珠;溶胶-凝胶;表面改性;轻质;高强
标筋
ABSTRACT
In this paper, a lightweight high-strength material was fabricated using hollow glass microspheres (HGM) as the main material. The microspheres connected each other directly and were not damaged. It takes advantage of the low thermal conductivity of the air to achieve lightweight and excellent thermal performances.
Becau the commercial HGM are often hydrophobic treated, conventional water-bad oxide binder is difficult to wet the surface of HGM. Two methods were tried in this paper. The first method was to prepare the ethanol-water-bad B2O3-SiO2 and P2O5-SiO2 sol. The sol could wet and bond HGM. The effects of sintering temperature, different ratio of B/Si and water/silicon on the performance of the specimens were studied. The cond method was to modify HGM surface by hydrofluoric acid corrosion, calcinations and acrylic acid grafting. An inorganic aluminum-chromium phosphate binder was ud to bond the HGM, and the effects of sintering temperature and the concentration of chromium-aluminum phosphate solution on the performance of the specimens were studied.
The results indicated that the HGM specimens bonded by borosilicate or phosphorosilicate glass pos
sd a better performance. The apparent density of the specimens was below 0.48 g/cm3and the compressive strength reached 14.9MPa. Becau the melting point of borosilicate glass was relatively low, the densification of the samples was a liquid pha reaction sintering process. The specimens H sintered at 750°C possd the best performances with apparent density of 0.43g/cm3, apparent porosity of 41%, thermal conductivity of 0.1 W/m·K and compressive strength of 10MPa. The densification process of the specimens with phosphorosilicate glass, was mainly carried out by the solid-pha reaction. With the increasing temperature, the solid pha reaction accelerated, and as a result, the shrinkage of the samples incread. The enhanced densification incread the apparent density. The apparent porosity was affected by densification and performance of HGM, while densification and porosity played significant roles on compressive strength of the specimens.
The HF corrosion was most effective and the apparent density of the specimens was 0.4~0.5 g/cm3, apparent porosity was 30~40% and the compressive strength reached 13MPa.
KEY WORDS:HGM; Sol-gel; Surface modification; Lightweight; High-strength
目录
第一章绪论 (1)
1.1保温材料的研究现状 (1)
康德三大批判
1.1.1保温材料的概况 (1)
难过图片
1.1.2保温材料的种类 (1)
1.2空心玻璃微珠 (3)
1.2.1空心玻璃微珠的简介 (3)
1.2.2空心玻璃微珠成分特点 (4)
1.2.3空心玻璃微珠的制备 (4)
1.2.4空心玻璃微珠保温材料的发展状况 (5)
1.3低熔点硼硅酸盐玻璃 (6)
1.3.1低熔点硼硅酸盐玻璃的结构特点 (6)
1.3.2低熔点硼硅酸盐玻璃的性能和应用 (7)
1.4低熔点磷酸盐玻璃 (8)
1.5空心玻璃微珠表面改性的概述 (8)松露的功效
1.6磷酸铬铝粘结剂 (9)
1.7研究内容及选题意义 (10)
第二章试验与测试 (11)
2.1实验原料和仪器 (11)
2.2试样的制备 (12)
2.2.1氧化物溶胶结合微珠试样的制备 (12)
2.2.2表面改性空心玻璃微珠制备轻质高强材料 (13)
2.3测试表征 (14)
2.3.1体积密度和显气孔率的测试 (14)
2.3.2表面润湿性检测 (14)
2.3.3试样形貌的观测 (15)
2.3.4物相和官能团的测定 (15)
2.3.5抗压强度的测定 (15)
2.3.6热电导率的测试 (15)
第三章试验结果与讨论 (16)
3.1空心玻璃微珠的性能分析 (16)