图的遍历算法

更新时间:2023-06-30 15:34:00 阅读: 评论:0

1.数学报图的遍历问题
在实践中常常遇到这样的问题:给定n个点,从任一点出发对所有的点访问一次并且只访问一次。如果用图中的顶点表示这些点,图中的边表示可能的连接,那么这个问题就可以表示成图的遍历问题,即从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。图的遍历操作和树的遍历操作功能相似,是图的一种基本操作,图的许多其它操作都是建立在遍历操作的基础上。
由于图结构本身的复杂性,所以图的遍历操作也比较复杂,主要表现在以下几个方面:
(1)在图结构中,没有一个确定的首结点,图中任意一个顶点都可以作为第一个被访问的结点。
(2)在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需要考虑如何选取下一个出发点以访问图中其余的连通分量。
(3)在图结构中,如果有回路存在,那么一个顶点被访问后,有可能沿回路又回到该顶点。
(4)在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。
    基于以上分析,图的遍历方法目前有深度优先搜索(DFS)和广度优先搜索(BFS)两种算法。下面将介绍两种算法的实现思路,分析算法效率并编程实现。
1.1 深度优先搜索算法
深度优先搜索算法是树的先根遍历的推广,它的实现思想是:从图G的某个顶点V0出发,访问V0,然后选择一个与V0相邻且没被访问过的顶点Vi访问,再从Vi出发选择一个与Vi相邻且未被访问的顶点Vj进行访问,依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则退回已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样的方法向前遍历,直到图中所有顶点都被访问。其递归算法如下:
Boolean visited[MAX_VERTEX_NUM]; //访问标志数组
Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数
void DFSTraver (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum; ++v)
visited[v] = FALSE; //访问标志数组初始化
for(v=0; v<G.vexnum; ++v)
if(!visited[v])
DFS(G, v); //对尚未访问的顶点调用DFS
}
void DFS(Graph G, int v){ //从第v个顶点出发递归地深度优先遍历图G
visited[v]=TRUE; VisitFunc(v); //访问第v个顶点
如何在农村致富
for(w=FirstAdjVex(G,v); w>=0; w=NextAdjVex(G,v,w))
//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。
//若w是v的邻接顶点,NextAdjVex返回v的(相对于w的)下一个邻接顶点。
//若w是v的最后一个邻接点,则返回空(0)。
if(!visited[w])
DFS(G, w); //对v的尚未访问的邻接顶点w调用DFS
}
由以上叙述可知,深度优先搜索算法的效率取决于图的数据结构的表示方法。当访问某顶点Vi时,DFS的时间主要消耗在从该顶点出发搜索它的所有邻接点上。用邻接矩阵表示图时,其搜索时间为O(n);用邻接表表示图时,需搜索第i个边表上的所有结点。因此,对所有n个顶点访问,在邻接矩阵上共需检查n2个矩阵元素,而在邻接表上需将边表中所有e个结点检查一遍。故由理论分析可知,DFS的时间复杂度为O(n2)或O(n+e)。
1.2 广度优先搜索算法
没有安全感
广度优先搜索算法是树的按层次遍历的推广,它的基本思路是:首先访问初始点Vi,并将其标记为已访问点,然后访问Vi的所有未被访问过的邻接点Vi1不小心祸大了,Vi2,…Vit,并均标记为已访问,再按照Vi1,Vi2,…Vit的顺序,依次访问每一个顶点的所有未被访问过的邻接点,并标记为已访问。依次类推,直到图中所有和初始点Vi有路径相通的顶点都被访问过为止。如果仍有未被访问过的顶点,该算法必须从图的其它连通分量的任意顶点重新开始。其非递归算法如下:美人蕉根
Boolean visited[MAX_VERTEX_NUM]; //访问标志数组
Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数
void BFSTraver (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum, ++v)
visited[v] = FALSE;
initQueue(Q); //置空辅助队列Q
for(v=0; v<G.vexnum; ++v)
if(!visited[v]){
visited[v]=TRUE; VisitFunc(v);
EnQueue(Q, v); //v入队列
while(!QueueEmpty(Q)){
DeQueue(Q, u); //队头元素出队并置为u
for(w=FirstAdjVex(G,u); w>=0; w=NextAdjVex(G,u,w))
if(!Visited[w]){ //w为u的尚未访问的邻接顶点
Visited[w]=TRUE; VisitFunc(w);
EnQueue(Q, w);}}}}
广度优先搜索算法的时间复杂度和深度优先搜索算法的时间复杂度相同。和深度优先搜索不同的是,广度优先搜索的队列是惟一的,对于具有n个顶点和e条边的无向图或有向图,每个顶点均入队一次,当图是连通图时,只需要调用一次邻接矩阵或邻接链表即可完成遍历操作。故邻接矩阵表示法的遍历时间效率为O(n2),邻接链表表示法的遍历时间效率为O(n+e)。
1.3 运行结果及分析
这里选择邻接矩阵作为图的存储结构编写程序,然后将图1的顶点和边输入程序作为测试。
图1 测试图
暴发户老金程序运行结果如下图2:
图2运行结果图
文化的解释
    由结果知,对图1深度优先遍历的结果为:a b d h e c f g,广度优先遍历的结果为a b c d e f g h。又因为程序的时间效率为O(n2),当测试数值非常小时,程序运行的时间将十分小,忽略不计,故遍历时间为0。
2.字符串匹配问题
字符串匹配(String match)是在实际工作中经常碰到的问题,通常是输入主字符串(String)和字串(又称模式Pattern)组成,然后根据一定的算法来得出字串在主字符串中的位置。通常精确的字符串匹配算法包括暴力搜索(Brute force,又叫蛮力法),KMP(Knuth-Morris-Pratt),BM(Boyer Moore)等等。假定原字符串长度为n,子字符串长度为m,下面将介绍以上这三种方法并给出其实现。
2.1 蛮力法
蛮力法是一种简单的匹配算法,它将字串和主字符串从左方对齐,然后从左到右将子串和主字符串中每一对相应的字符串进行匹配,如果一旦不匹配,则把字串向右移动一格,再进行下一轮匹配。因为这种尝试的最大次数是n-m+1次,在最坏的情况下,每次尝试需要进行m次比较,所以在最坏的情况下,字符比较的次数为m*(n-m+1)。故蛮力法的时间效率为O(mn)。其设计思想为:
①在串S、T中比较的起始下标为i和j;
②循环直到S中剩下的字符个数小于T的长度或T的所有
字符都比较完:
如果S[i]=T[j],则继续比较S和T的下一个字符,否则
将i和j回溯,进行下一趟比较;
③如果T中的字符都比较完,则匹配成功,返回匹配的起
始下标,否则匹配失败,返回0。
2.2 KMP算法
KMP算法使用了输入增强的思想,对模式进行预处理以得到一些信息,把这些信息存储在表中,然后在给定文本中实际查找模式时使用这些信息。KMP算法也是将子字符串从左到右和主串进行匹配,和蛮力法不同的是,KMP算法在匹配失败后,并不是简单的从目标串的下一个字符串开始新一轮的检测,而是依据在检测之前得到的有用信息,直接跳过不必要的检测,从主串中找一个和子串字符匹配成功的字符,以这个字符为起点将字串对齐,然后开始新的匹配。从而达到一个较高的匹配效率。KMP算法的时间复杂度为O(n+m),当
m远小于n的时候,算法的效率将取决于主字符串的长度,即时间复杂度为O(n)。其设计思想为:

本文发布于:2023-06-30 15:34:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/1061747.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:顶点   访问   遍历   算法   匹配
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图