Besov空间中三维Micropolar流体方程组弱解的正则性准则

更新时间:2023-06-25 03:02:52 阅读: 评论:0

Chin.Quart.J.of Math.
2020,35(4):418-423
Regularity Criterion of Weak Solutions to the3D Micropolar Fluid Equations in Besov Space
LI Xiao
(Department of Mathematics Teaching and Rearch,Huanghe Jiaotong University,Henan,454000,
China)
Abstract:This paper studies the regularity criterion of weak solutions to the micropolar
fluid equations in three dimensions.Let(V u e L2-y(0,T;B—Y』,V w e L2(0,T;^g),it
is showed that the weak solution(u,w)is globally regular for the ca0<y<2.
Keywords:Micropolar fluid equations;Regularity criteria;Besov space
2000MR Subject Classification:35Q35,35B65
CLC number:O175.29Document code:A
Article ID:1002-0462(2020)04-0418-06
DOI:10.13371力ki.chin.2020.04.010
§1.Introduction
In this paper we consider the regularity criterion of weak solutions for the incompressible micropolar fluid equations in terms of pressure in three dimensions:
dU—+u-V u+V p=0,
疇—y A z—KVdivz+2x3+u-V®—%V x u=0,
divu=0,
、u(x,0)=u o(x),3(x,0)=3o(x),
where u=(u i(x,t),u2(x,t),u s(x,t))denotes the velocity of the fluid at a point x e R3and time t e[0,T);3=(3i(x,t),32(x,t),33(x,t))and p=p(x,t)stand for the micro-rotational velocity and the hydrostatic pressure,
respectively,u°and3°are the prescribed initial data for the velocity and angular velocity with property divu°=0,卩is the kinematic viscosity,x is the vortex viscosity,k and y are spin viscosities.
A theory of Micropolar fluid system was firstly developed by Eringen[6].It is a type of fluids which exhibits micro-rotational effects and micro-rotational inertia,and can be viewed as a non-Newtonian fluid.Physically,micropolar fluids reprent fluids that consist of rigid,randomly oriented(or spherical particles)suspended in a viscous medium,where the deformation of fluid
Received date:2020-04-10
Biographies:LI Xiao(1991-),femal,native of Fanxian,Henan,graduate student,engages in partial differential equations and applications.
418
No.4LI Xiao:Regularity Criterion of Weak Solutions---419
particles is ignored.It can describe many phenomena that appear in a large number of complex fluids such as the suspensions,animal blood,liquid crystals which cannot be characterized appropriately by the Navier-Stokes system.For more background,we refer to[12]and references therein.
Mathematically,Galdi and Rionero considered the weak solutions in[7].Using linearization and an almost fixed point theorem,Lukaszewicz[13]established the global existence of weak solutions with sufficiently regular initial data.And using the same technique,Lukaszewicz[14] proved the local and global existence and the uniqueness of the strong solutions under asymmetric condition.Yamaguchi[19]proved the existence theorem of global in time solution for small initial data.
When the micro-rotation effects are neglected or•=0,the micropolar fluid flows reduces to the incompressible Navier-Stokes equations,which has been greatly analyzed,e,for example, the classical books by Ladyzhenskaya[9],Lions[11]or Lemari6-Rieust[10].From the viewpoint of the model,therefore,Navier-Stokes flow is viewed as the flow of a simplified micropolar fluid.
Besides their physical applications,the micropolar fluid equations are also mathematically significant.Fundamental mathematical issues such as the global regularity of their solutions have generated extensive rearch,and many interesting results have been obtained(e,for example,[3,4,8,12,15,18]and references therein).
The regularity of weak solutions and blow-up criteria of smooth solutions to the micropolar fluid equations are important topic in the rearch of global well-podness.Yuan[21]established classical Serrin-type regularity criteria in terms of the velocity or its gradient
辣白菜五花肉炒饭
23
u w L q(0,T;L p)(R3),—+—=1,3<p Sx
q P
and
233
绿豆甜汤V u w L q(0,T;L p)(R3),-+-=2,-<P<X.
q p2
Particularly,in the end-point ca p=x,the blow-up criteria can be extended to more general spaces Vu w L x(0,T;B±m).Later Yuan[20]extended the Serrin's regularity criteria to Lorentz spaces,and Gala[8]extended the Serrin's regularity criteria to the Morrey-Campanto spaces.
Dong[5]further refined the velocity regularity in general Besov spaces
u W L皋(0,T;B^i TO)(R3),-1<r<1.
Recently,two new logarithmically blow-up criteria of smooth solution to the equations (1.1)in the Morrey-Campanto space are established by Wang and Zhao[18],and Zhang[17] established an improved blow-up criteria in terms of vorticity of velocity in Besov
严||V x训B o
/f二dt<x.
J0A/1+log(1+|Vx u\I jb o)
420CHINESE  QUARTERLY  JOURNAL  OF  MATHEMATICS Vol. 35
Motivated  by  the  reference  mentioned  above, the  purpo  of  the  prent  paper  is  to  extend  the  blow-up  criteria  of  smooth  solutions  and  the  regularity  of  weak  solutions  to  the  micropolar  fluid  equations  (1.1) in  terms  of  partial  derivatives  of  the  velocity  and  the  micro-rotational  velocity.
Before  stating  our  main  results  we  introduce  some  function  spaces  and  notations. Let (R 3) denote  the  t  of  all  C m  vector  functions  f  (x) = (/i (x),/2(x),/3(x)) with  compact  support  such  that  divf  (x) = 0. L ; (R 3) is  the  closure  of  C Q ^a  (R 3)-function  with  respect  to  the  L r -norm
  || - ||r  for  1 <r  <x . H S (R 3) denotes  the  closure  of  C (^a (R 3) with  respect  to  the  H s -norm  ||f  ||炉=||(1 —△)2f  H 2, for  s  >0.
Now, we  state  our  results  as  follows.
Theorem  1.1. Let  u q  W  H 1 (R 3) and  3° W  H X (R 3). Suppo  that  (u(t,x),^(t,x)) is  a  weak  solution  to  the  equations  (1.1) and  satisfies  the  strong  energy  inequality. If  (u,3)satisfies
r T  2
(|V u(t)||B 二 + ||V3(t)||B
— i  )dT< X ,
then  the  weak  solution  (u,3)is  regular  on  (0,T ].Next, in  order  to  derive  the  criteria  on  regularity  of  weak  solutions  to  the  micropolar  fluid  equations  (1.1), we  introduce  the  definition  of  a  weak  solution.Definition  1.1. Let  u °(x) W  L ^(R 3) and  3°(x) W  L 2 (R 3). A  measurable  function  (u(x,t),3(x,t)) is  called  a  weak  solution  to  the  micropolar  equations  (1.1) on  [0,T ] if
(a)
u(x,t) W  L TO (0,T ;L 2(R 3)) n L 2(0,T ;H l (R 3))
and
(b)
3 W  L TO (0,T ;L 2(R 3)) n L 2(0,T ;H X (R 3));
{-(u,d T 0)+ (“ + x)(V u, V ^) + (u  ・V u,0)}— x(V  x  3,^)dr
禾麻
=—(u 0,^(0)),
{ —(3,篦 0)+ y (V 3, V 0) + K (div3,div0) + 2x (3,0) + (u  - V 3,0) — x(V  x  u,0)dT = -(30,0(0)),
for  any  卩(x,t) W  H  1([0,T ]; H 1 (R 3) and  0(x,t) W  H  1([0,T ]; H  1(R 3) with  卩(T)=0 and  0(T) = 0. In  the  reference  [16], Rojas-Medar  and  Boldrini  proved  the  global  existence  of  weak  solutions  to  the  equations  (1.1) of  the  magneto-micropolar  fluid  motion  by  the  Galerkin  method. The  weak  solutions  also  satisfy  the  strong  energy  inequality
IIVulRds  + 2了/ |V3|2ds  + 2k / ||div3||2
ds
No. 4LI  Xiao: Regularity  Criterion  of  Weak  Solutions---421
Il 3||2ds  <\\(u o ,3o )\\l ,
Lemma  1.1. (page  82 in  [1]) Let  1 < q  <p  < x  and  a  be  a  position  real  number. A  constant  C  exists  such  that
with  0 = a(P  — 1) and  0 =qp In  particular, for  q  = 2, p  = 3,we  have
休闲裤男装
1 2\f \L3 < C  Ilf  ||B 「Ilf
2 .
(1.2)
Another  situation, for  0 = 1, q  = 2 and  p  = 4 , we  get  a  = 1 and 11If  IL  < C  Ilf  ||B  -」|f  賂 1.
(1.3)
Then  we  prove  Theorem  1.1 in  Section  2 as  follows.§2. Proof  of  Theorem  1・1
Taking  the  inner  product  of  —Au  with  the  first  equation  of  (1.1), and  taking  the  inner  product  of  —A® with  the  cond  equation  of  (1.1). By  integrating  by  parts  and  using  the  incompressibility  condition, we  have
(|V u |2 + ll V3\l ) + (" + x)\ △训 1 + 7|A3\i  + K \div V 3\2
x  / V  x  V 3 - V udx  + x  / V  x  V u  - V ®dx  — 2x||V3||i  J r 3 J r 3<2xii V 3iii +211 △训1—2x IV 3I i =211 △训1.
Substituting  (2.2) into  (2.1) yields  that
(IVuI i  + ll V3I i ) +(" + 学)II  △训1 + y I A3I 1 + K ||divV3||2
< V u  - V u  - V udx  + V u  - V ® - V ®dx.
7r 3 7r 3<X  / V  x  V 3 - V udx  + x/ V  x  V u  - V ®dx  — 2XII V 3I 1
梦见别人杀我
J r 3 J r 3(2.1)
▽u  • • \/3dx.
for  0 < s  < t  < T .
B x , x  q,
Employing  the  Holder  and  Young  inequalities  and  integration  by  parts, we  derive  the  estimation  of  the  first  three  terms  on  the  right-hand  side  of  (2.1) as
(2.2)
(2.3)
422CHINESE  QUARTERLY  JOURNAL  OF  MATHEMATICS Vol. 35Next  we  estimate  the  estimation  of  the  first  two  terms  on  the  right-hand  side  of  (2.3). By  means  of  the  Holder  and  Young  inequalities, as  well  as  (1.2), we  have
V u  - V u  - V udx  <||Vu||3
<C  I V u I B  Xx IWG Y <C  ||Vu||B  X Y x ||Vu|「||Vu||;
<C||Vu|負 ||Vu||i  + 豊||Au||i ,
B  CO  , CO  2
where  we  have  ud  the  interpolation  inequality
2 2 — y  y IV 训H 2 <C||V 训2 Y ||V u||;.
Arguing  the  Hoolder  and  Young  inequalities  and  combing  the  inequality  (1.3), one  has
/ Vu -V ®-V ®dx<||Vu||i||V 3||4
丿r 3
<C  ||V 训 i||V3||B x 1x I A 3||i  <C||V3||B-1
||Vu||i  + 2 ||A3||i .B  B x  , CO  2Inrting  (2.2), (2.4) and  (2.5) into  (2.1), we  find
脚的英文复数
(I ▽训1 + ll V3I i ) + (“;%)”△训i  + 2 ll A3I i  + K ||div V 3I i
2<C(||Vu||i  + ||V3||i )(||Vu||B 二 + ||V3||B -1 ).B x ,x  B x ,x Then, by  means  of  Gronwall  inequality  and  energy  inequality  (1.2), we  finally  have
IIV u II 1 + ||V3||i
+ (“ + x) / ||Au||i dT+ / y I|A3||1 dr  + 2^ IdivVz^dT o  o  o
<(IV u o (x )||i  + ||V 3o (x )||i  + C  ||V ”u o (x )|| 訂 exp  (||V 训 + ||V 3||B  x J d (2.4)
(2.5)
(2.6)
(2.7)<x .
Thus, we  complete  the  proof  of  Theorem  1.1.
[References]
[1] BAHOURI  H, DANCHIN  R, CHEMIN  J  Y. Fourier  analysis  and  nonlinear  partial  differential  equations[M]. Berlin  Heidelberg: Springer, 2011.
[2] BERGH  J, LOFSTROM  J  L. Inerpolation  spaces, an  introduction[M]. New  York: Springer, 1976.
[3] CHEN  Q  L, MIAO  C  X. Global  well-podness  for  the  micropolar  fluid  system  in  critical  Besov  spaces[J]. J. Differ. Equ., 2012, 252: 2698-2724.
[4] DONG  B  Q, CHEN  Z  M. Regularity  criteria  of  weak  solutions  to  the  three-dimensional  micropolar  flows[J]. J. Math. Phys., 2009, 50: 1-13.
[5] DONG  B  Q, ZHANG  W. On  the  regularity  criterion  for  the  three-dimensional  micropolar  flows  in  Besov  spaces[J]. Nonlinear  Anal., 2010, 73:
风筝英语幼教培训2334-2341.

本文发布于:2023-06-25 03:02:52,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/1053651.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:辣白菜   男装   幼教   炒饭   休闲裤   培训   五花肉
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图