数学符号读法及其含义

更新时间:2023-06-24 02:30:53 阅读: 评论:0

大写小写英文注音国际音标注音中文注音Αα alpha alfa 阿耳法
Ββ beta  beta                    贝塔
Γγ gamma  gamma 伽马
北京不孕不育医院哪家好
Γδ deta  delta 德耳塔
Δεepsilon  epsilon 艾普西隆
Εδ zeta  zeta 截塔
Ζε eta  eta 艾塔
Θζ  theta ζita 西塔
Ηη iota  iota 约塔
Κθ  kappa  kappa 卡帕
∧ι  lambda  lambda 兰姆达
Μκ mu      miu 缪
Νλ nu  niu 纽
Ξμxi  ksi 可塞
Ον  omicron  omikron 奥密可戎
∏π  pi  pai 派
Ρξ  rho  rou 柔
∑ζ  sigma  sigma 西格马
Τη tau tau 套
冰镩Υυ upsilon  jupsilon 衣普西隆
Φθ phi  fai 斐
Φχ chi  khai 喜
Χψ psi  psai 普西
Ψω omega  omiga 欧米伽
符号表
符号含义
i -1的平方根
f(x) 函数f在自变量x处的值
sin(x) 在自变量x处的正弦函数值
exp(x) 在自变量x处的指数函数值,常被写作ex
a^x a的x次方;有理数x由反函数定义
ln x exp x 的反函数
怎么鉴别玉ax 同 a^x
logba 以b为底a的对数; blogba = a
师说词类活用cos x 在自变量x处余弦函数的值
tan x 其值等于 sin x/cos x
cot x 余切函数的值或 cos x/sin x
c x 正割含数的值,其值等于 1/cos x
csc x 余割函数的值,其值等于 1/sin x
asin x y,正弦函数反函数在x处的值,即 x = sin y
acos x y,余弦函数反函数在x处的值,即 x = cos y
atan x y,正切函数反函数在x处的值,即 x = tan y
acot x y,余切函数反函数在x处的值,即 x = cot y
ac x y,正割函数反函数在x处的值,即 x = c y
组织生活会和民主生活会
acsc x y,余割函数反函数在x处的值,即 x = csc y
ζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时
i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量
(a, b) 以a、b为元素的向量
(a, b) a、b向量的点积
a?b a、b向量的点积
(a?b) a、b向量的点积
|v| 向量v的模
|x| 数x的绝对值
Σ表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100的和可以表示成,这表示  1 + 2 + … + n
M 表示一个矩阵或数列或其它
|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v| 被写成行或可被看成从1×k阶矩阵的向量
dx 变量x的一个无穷小变化,dy, dz, dr等类似
ds 长度的微小变化
符号含义
ξ变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离
r 变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离
|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积||M|| 矩阵M的行列式的值,为一个面积、体积或超体积
det M M的行列式
M-1 矩阵M的逆矩阵
v×w向量v和w的向量积或叉积
ζvw 向量v和w之间的夹角
A?B×C标量三重积,以A、B、C为列的矩阵的行列式
uw 在向量w方向上的单位向量,即 w/|w|
df 函数f的微小变化,足够小以至适合于所有相关函数的线性近似
df/dx f关于x的导数,同时也是f的线性近似斜率
f ' 函数f关于相应自变量的导数,自变量通常为x
df/dx y、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df与dq的比值。任何可能导致变量混淆的地方都应明确地表述
(df/dx)|r,z 保持r和z不变时,f关于x的偏导数
grad f 元素分别为f关于x、y、z偏导数 [(?f/?x), (?f/?y), (?f/?z)] 或 (?f/?x)i + (?f/?y)j + (?f/?z)k; 的向量场,称为f的梯度
d 向量算子(d/dx)i + (d/dx)j + (d/dx)k, 读作 "del" ?f f的梯度;它和 uw 的点积为f在w方向上的方向导数
??w 向量场w的散度,为向量算子? 同向量 w的点积, 或 (?wx /?x) + (?wy /?y) + (?wz /?z)
curl w 向量算子 ? 同向量 w 的叉积
?×w w的旋度,其元素为[(?fz /?y) - (?fy /?z), (?fx /?z) - (?fz /?x), (?fy /?x) - (?fx /?y)]
??? 拉普拉斯微分算子: (?2/?x2) + (?/?y2) + (?/?z2) f "(x) f关于x的二阶导数,f '(x)的导数
d2f/dx2 f关于x的二阶导数
f(2)(x) 同样也是f关于x的二阶导数
f(k)(x) f关于x的第k阶导数,f(k-1) (x)的导数
传统节日春节T 曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt|
ds 沿曲线方向距离的导数
θ曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds| N dT/ds投影方向单位向量,垂直于T
B 平面T和N的单位法向量,即曲率的平面
η曲线的扭率: |dB/ds|
g 重力常数
符号含义
F 力学中力的标准符号
k 弹簧的弹簧常数
口香糖事件pi 第i个物体的动量
H 物理系统的哈密尔敦函数,即位置和动量表示的能量
{Q, H} Q, H的泊松括号
以一个关于x的函数的形式表达的f(x)的积分
函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和直线y = a,
y = b 及在这些直线之间的函数曲线所围起来图形的面积
L(d) 相等子区间大小为d,每个子区间左端点的值为 f的黎曼和
R(d) 相等子区间大小为d,每个子区间右端点的值为 f的黎曼和
M(d) 相等子区间大小为d,每个子区间上的最大值为 f的黎曼和
m(d) 相等子区间大小为d,每个子区间上的最小值为 f的黎曼和
+:plus(positive正的)
-:minus(negative负的)
*:multiplied by
÷:divided by
=:be equal to
≈:be approximately equal to
():round brackets(parenthess)
[]:square brackets
{}:braces
∵:becau
∴:therefore
≤:less than or equal to
≥:greater than or equal to
∞:infinity
LOGnX:logx to the ba n
xn:the nth power of x
f(x):the function of x
dx:diffrencial of x
x+y:x plus y
(a+b):bracket a plus b bracket clod
a=b:a equals b
a≠b:a isn't equal to b
a>b:a is greater than b
a>>b:a is much greater than b
a≥b: a is greater than or equal to b
x→∞:x approches infinity
x2:x square
x3:x cube
√ ̄x:the square root of x
3√ ̄x:the cube root of x
3‰:three peimill
n∑i=1xi:the summation of x where x goes from 1to n
n∏i=1xi:the product of x sub i where igoes from 1to n
∫ab:integral betweens a and b
(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
小数部分x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)

本文发布于:2023-06-24 02:30:53,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/1052135.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:符号   函数   向量   曲线   表示
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图