强化学习算法实例DQN代码PyTorch实现前⾔
实例参考,
更改为PyTorch实现,并增加了⼏处优化。实现效果如下。
其中,红⾊⽅块作为探索的智能体,到达黄⾊圆形块reward=1,到达⿊⾊⽅块区域reward=-1.
代码
程序主循环
from dqn.maze_env import Maze
from dqn.RL_brain import DQN
import time
def run_maze():
print("====Game Start====")
step = 0
感恩诗歌max_episode = 500
for episode in range(max_episode):
state = () # 重置智能体位置
step_every_episode = 0
epsilon = episode / max_episode # 动态变化随机值
while True:
if episode < 10:
time.sleep(0.1)
if episode > 480:
time.sleep(0.5)
action = model.choo_action(state, epsilon) # 根据状态选择⾏为
# 环境根据⾏为给出下⼀个状态,奖励,是否结束。
next_state, reward, terminal = env.step(action)
model.store_transition(state, action, reward, next_state) # 模型存储经历
# 控制学习起始时间(先积累记忆再学习)和控制学习的频率(积累多少步经验学习⼀次)
if step > 200 and step % 5 == 0:
model.learn()
# 进⼊下⼀步
state = next_state
if terminal:
print("episode=", episode, end=",")
print("step=", step_every_episode)
break
step += 1
step_every_episode += 1
# 游戏环境结束
print("====Game Over====")
env.destroy()
if __name__ == "__main__":
env = Maze() # 环境
model = DQN(
n_states=env.n_states,
n_actions=env.n_actions
) # 算法模型
run_maze()
env.mainloop()
model.plot_cost() # 误差曲线
环境模块maze_env.py
import tkinter as tk
import sys
import numpy as np
UNIT = 40 # pixels
MAZE_H = 4 # grid height
MAZE_W = 4 # grid width
class Maze(tk.Tk, object):
def __init__(lf):
print("<env init>")
super(Maze, lf).__init__()
# 动作空间(定义智能体可选的⾏为),action=0-3
罗曼罗兰名言
lf.action_space = ['u', 'd', 'l', 'r']
# 使⽤变量
lf.n_actions = len(lf.action_space)
lf.n_states = 2
# 配置信息
lf.title('maze')
# 初始化操作
lf.__build_maze()
def render(lf):最大的蝎子
# time.sleep(0.1)
lf.update()
def ret(lf):
# 智能体回到初始位置
# time.sleep(0.1)
lf.update()
lf.canvas.)
origin = np.array([20, 20])
< = ate_rectangle(
origin[0] - 15, origin[1] - 15,
origin[0] + 15, origin[1] + 15,
fill='red')
# return obrvation
return (np.array()[:2]) - np.array(ds(lf.oval)[:2])) / (MAZE_H * UNIT) def step(lf, action):
# 智能体向前移动⼀步:返回next_state,reward,terminal
s = )
ba_action = np.array([0, 0])
if action == 0: # up
if s[1] > UNIT:
ba_action[1] -= UNIT
elif action == 1: # down
if s[1] < (MAZE_H - 1) * UNIT:钱学森夫人蒋英
ba_action[1] += UNIT
elif action == 2: # right
if s[0] < (MAZE_W - 1) * UNIT:
ba_action[0] += UNIT
elif action == 3: # left
if s[0] > UNIT:
ba_action[0] -= UNIT
饱满的热情
, ba_action[0], ba_action[1]) # move agent
next_coords = ) # next state
# reward function
if next_coords == ds(lf.oval):
reward = 1
print("victory")
done = True
elif next_coords in [ds(lf.hell1)]:
reward = -1
print("defeat")
done = True
el:
reward = 0
done = Fal
s_ = (np.array(next_coords[:2]) - np.array(ds(lf.oval)[:2])) / (MAZE_H * UNIT)
return s_, reward, done
def __build_maze(lf):
lf.canvas = tk.Canvas(lf, bg='white',
height=MAZE_H * UNIT,
width=MAZE_W * UNIT)
# create grids
for c in range(0, MAZE_W * UNIT, UNIT):
x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
ate_line(x0, y0, x1, y1)
for r in range(0, MAZE_H * UNIT, UNIT):
x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
ate_line(x0, y0, x1, y1)
节约用水调查报告origin = np.array([20, 20])
hell1_center = origin + np.array([UNIT * 2, UNIT])
lf.hell1 = ate_rectangle(
hell1_center[0] - 15, hell1_center[1] - 15,
hell1_center[0] + 15, hell1_center[1] + 15,
fill='black')
oval_center = origin + UNIT * 2
lf.oval = ate_oval(
oval_center[0] - 15, oval_center[1] - 15,
oval_center[0] + 15, oval_center[1] + 15,
fill='yellow')
< = ate_rectangle(
origin[0] - 15, origin[1] - 15,
origin[0] + 15, origin[1] + 15,
fill='red')
lf.canvas.pack()
DQN模型RL_brain.py
class Net(nn.Module):
def __init__(lf, n_states, n_actions):
super(Net, lf).__init__()
lf.fc1 = nn.Linear(n_states, 10)
lf.fc2 = nn.Linear(10, n_actions)
lf.fc1.al_(0, 0.1)
lf.fc2.al_(0, 0.1)
def forward(lf, x):
x = lf.fc1(x)
x = F.relu(x)
out = lf.fc2(x)
return out
class DQN:
def __init__(lf, n_states, n_actions):
print("<DQN init>")
# DQN有两个net:target net和eval net,具有选动作,存经历,学习三个基本功能
lf.eval_net, lf.target_net = Net(n_states, n_actions), Net(n_states, n_actions)
lf.loss = nn.MSELoss()
lf.optimizer = torch.optim.Adam(lf.eval_net.parameters(), lr=0.01)
lf.n_actions = n_actions
lf.n_states = n_states
# 使⽤变量
lf.learn_step_counter = 0 # target⽹络学习计数
<_counter = 0 # 记忆计数
< = np.zeros((2000, 2 * 2 + 2)) # 2*2(state和next_state,每个x,y坐标确定)+2(action和reward),存储2000个记忆体 lf.cost = [] # 记录损失值
def choo_action(lf, x, epsilon):
# print("<choo_action>")
x = torch.unsqueeze(torch.FloatTensor(x), 0) # (1,2)
if np.random.uniform() < epsilon:
action_value = lf.eval_net.forward(x)
action = torch.max(action_value, 1)[1].data.numpy()[0]
el:
action = np.random.randint(0, lf.n_actions)
# print("action=", action)
return action
def store_transition(lf, state, action, reward, next_state):
# print("<store_transition>")
transition = np.hstack((state, [action, reward], next_state))
index = lf.memory_counter % 200 # 满了就覆盖旧的
<[index, :] = transition
<_counter += 1
def learn(lf):
# print("<learn>")
# target net 更新频率,⽤于预测,不会及时更新参数
if lf.learn_step_counter % 100 == 0:
lf.target_net.load_state_dict((lf.eval_net.state_dict()))
f调笛子指法lf.learn_step_counter += 1
# 使⽤记忆库中批量数据
sample_index = np.random.choice(200, 16) # 2000个中随机抽取32个作为batch_size
memory = lf.memory[sample_index, :] # 抽取的记忆单元,并逐个提取
state = torch.FloatTensor(memory[:, :2])
action = torch.LongTensor(memory[:, 2:3])
reward = torch.LongTensor(memory[:, 3:4])
next_state = torch.FloatTensor(memory[:, 4:6])
# 计算loss,q_eval:所采取动作的预测value,q_target:所采取动作的实际value
q_eval = lf.eval_net(state).gather(1, action) # eval_net->(64,4)->按照action索引提取出q_value
q_next = lf.target_net(next_state).detach()
# torch.max->[values=[],indices=[]] max(1)[0]->values=[]
q_target = reward + 0.9 * q_next.max(1)[0].unsqueeze(1) # label
行己loss = lf.loss(q_eval, q_target)
# 反向传播更新
_grad() # 梯度重置
loss.backward() # 反向求导
lf.optimizer.step() # 更新模型参数
def plot_cost(lf):
plt.plot(np.arange(st)), lf.cost)
plt.xlabel("step")
plt.ylabel("cost")
plt.show()
参考