降维方法

更新时间:2023-06-17 08:55:09 阅读: 评论:0

国内当前流行的文本分类算法有最大熵(MaximumEntropyME),K近邻法(KNN),朴素贝叶斯法(NB)支持向量机法(SVM),线性最小平分拟合法(LLSF),神经网络法(Nnet)等,其中KNNNBSVM的分类效果相对较好。
文本分类由文本表示,特征降维和分类器训练组成,分类算法只是其中的一个环节,另外两个环节也非常重要。目前普遍采用向量空间模型来表示文本,常见的特征词加权方法有:布尔权重、词频权重、单位保洁TF—IDF权重等,常见的特征选择方法有文档频率,互信息和统计等。
基于机器学习文本分类的基础技术由文本的表示(reprentation) 、分类方法及效果(effectiveness)评估3 部分组成。Sebastiani对文本分类发展历程及当时的技术进行了总结,主要内容包括:
(1) 文本关于项(term)或特征的向量空间表示模型(VSM)及特征选择(lection)与特征提取(extraction)两种表示空间降维(dimensionality reduction)策略,讨论了χ2,IG,MI,OR 等用于特征过滤的显著性统计量及项聚类和隐含语义索引(LSI)等特征提取方法;
(2) 当时较成熟的分类模型方法,分类器的归纳构造(inductive construction)或模型的挖掘学习过程;
(3) 分类效果评估指标,如正确率(precision) 召回率(recall) 均衡点(BEP) Fβ(常用F1)和精度(accuracy),以及之前报道的在Reuters 等基准语料上的效果参考比较。
1、 中文评论语料的采集
利用 DOM 指鹿为马造句构建网页结构树,对结构树的分析实现了中文评论的自动采集的方法。以及对情感语料进行情感标注,利用中文分词技术对情感语料进行分词等基础性研究。
2、 情感词典的构建
利用湾鳄 PMI 算法,在基础情感词典和中文宾馆评论语料库的基础上构建宾馆评论领域情感词典的方法。
3、 文本处理中的特征选择、特征权值和向量表示
CHI 统计方法和采用情感词典作为情感特征选择的方法,以及降维的维度选择等相关问题。研究了 3 种特征权值计算方法和特征权值的意义,以及使用矩阵文本表示文本向量的方法。
4、 朴素贝叶斯分类器的构建
研究如何利用朴素贝叶斯方法构建中文文本情感分类器,估计先验概率和后验概率的方法,以及后验概率平滑技术参数设置等问题。实验对比了不同方法构建的分类器的性能,并进行了相关分析。
5、 朴素贝叶斯文本情感分类实验系统的设计与实现
开发了一个基于朴素贝叶斯的中文文本情感分类器,简要介绍了其系统构架、主要功能和工作流程,这个分类器是本文进行分类实验所使用的分类器。
语料的中文分词处理
虽然表示语言的最小粒度是字,但单个字并不能代表所有的语义,一般认为可表示语义的最小粒度为词。本文使用了传统的最大匹配算法对语料库中的中文文本进行分词,该方法属于基于字符串匹配的分词方法,需要分词词典支持。分词词典采用了国家语言文字工作委员会发布的《现代汉语常用词表(草案)(LCWCC)[49],该词典搜集了现在日常生活中使用频率较高的 56008 个词汇,基本能够满足分词的需要。在特征选择步骤,本文采用了
情感词典作为特征选择的依据,所以在分词时,实际是采用了 LCWCC 和情感词典的并集作为了分词词典。其中最大匹配的步长设置为 4 个汉字,只对中文内容进行分词处理。
用统计的方法对文本进行分类的关键步骤可以分为以下几步:
1)文本表示
2)文本的特征选择
3)特征对分类的贡献度量计算
4)分类算法选择
文本的表示
文本表示模型主要有布尔模型,向量空间模型和概率模型,最常用的是向量空间模型。
在向量空间模型中,每个文本都被表示为一组规范化正交特征矢量所组成的空间向量的一个点。该向量中每一维的值表示了一该特征项在文本中的权重。也就是说向量空间模型将
文本特征集视为一个高维的空间,特征集中的每一个元素t,都是高维空间中的一维,文档在该维上的值为哄这样一篇文档就表示成在特征向量空间上的一个向量。向量空间模型中向量间的相似程度可以根据向量之间的夹角大小来反映。在实际应用中常常通过计算向量夹角的余弦来得到相似度。
虽然空间向量模型是一个很好的模型但它也存在着不容忽视的缺点,集合是没有顺序的概念的,所以用空间向量模型来表示文本时丢掉了许多除词的信息以外的所有重要的信息,比如词语与词语之间的相对位置关系、上下文信息等。在语言中这种关系通常含有重要的意义。例如:
“联合国/n厦门一周天气维和部队/n遭到八反/d政府/n武装/nv人员猪蹄的营养价值/n袭击/v
“反/d政府/n学分互认武装/nv人员/n遭到八联合国/n维和部队/n袭击八”
这两句话用空间向量模型来表示是等价的,但恰恰相反这两句话意思完全不同。这使得向量空间模型所能表达的信息量存在上限,也直接导致了基于这种模型构建的文本分类系统,很难达到人类的分类能力。
文本特征提取
如何有效的降低维数并尽可能的减少噪声数据对分类效果的影响是文本特征提取的关键问题。对于大量的文本在分词后的词汇量是数以万计或者更高的,在分类器中这就表现为数以万计的维数。要处理这么多的数据,需要大量的时间,在对时间复杂度要求较高的系统(比如:在线服务的系统)中这是无法忍受的。这就要求所选用的分类器时间复杂度要低,尽可能的做到线性,但这是不现实的因为现有的机器学习分类算法很少有随着数据维数的增长时间线性增长的,这种非线性增长对海量数据而是就造成了所谓的“维数灾难”。所以有效的降低数据维数,去除噪音数据是数据降维的主要目的。在文本分类中常用特征选择来进行降维,选取那些对分类贡献高的词作为特征丢掉噪声和对分类贡献低的词。
特征的选取可以有基于人工的方式基于统计学的方式。基于人工的方式也就是人工选择那种重要的词来作为特征,这需要一定的经验。而基于统计学的方式又可以分为:基于文档频率的特征选择法,信息增益法,χ2统计量等多种方法。国内外很多学者对各种特征选择方法进行研究。结果表明在英文文本分类中表现比较好的方法在不加修正的情况下,并不适合中文文本分类。
分类器烹饪网
经过许多学者的努力提出了一些经典的算法。比如哑铃锻炼方法:Rocchio算法、K近邻算法(KNN)、贝叶斯分类器、支持向量机、最大嫡、决策树、人工神经网络等。和规则的方法相比统计的方法需要有较强的数学基础,但是统计的方法在普适性方面要比规则的方法要好。

本文发布于:2023-06-17 08:55:09,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/1042258.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:方法   文本   分类   向量   情感
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图