同弧所对的圆心角和圆周角的关系
圆周角和圆心角的关系:一条弧所对圆周角等于它所对圆心角的一半,即圆周角定理。
圆周角是顶点在圆周上的角,圆心角是顶点在圆心上的角。
1、在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距
中有一组量相等,那么他们所对应的其余各组量都分别相等。
2、在同圆或等圆中,成正比的弧所对的圆周角等同于它面元的圆心角的`一半(圆周
角与圆心角在弦的同侧)。
3、圆周角的度数等于它所对的弧度数的一半。
4、直径面元的圆周角就是直角;90度的圆周角面元的弦就是直径。
5、圆心角计算公式:θ=(l/2πr)×°=°l/πr=l/r(弧度)。
即为圆心角的度数等同于它面元的弧的度数;圆周角的度数等同于它面元的弧的度数
的一半。
本文发布于:2023-02-04 15:53:34,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/88/188020.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |