圆锥的体积说课稿(精选11篇)

更新时间:2023-05-12 22:32:58 阅读: 评论:0

圆锥的体积说课稿(精选11篇)

作为一位杰出的教职工,通常会被要求编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。怎样写说课稿才更能起到其作用呢?下面是为大家整理的圆锥的体积说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

圆锥的体积说课稿 篇1

一、说教材

1、本节教材是义务教育小学数学(苏教版)六年制第十二册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。

2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

3、教学重、难点:

⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;

⑵教学难点:理解圆锥体积公式的推导过程。

4、教学目标:

⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

5、教、学具准备:

⑴教具准备:等底等高的圆柱、圆锥一对;

⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。

二、说教法

著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

三、说学法

“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、***思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。

1、实验转化法

有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定货柜英文量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

2、尝试练习法

苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

四、说教学程序

本节课我设计了以下四个教学程序:

1、谈话导入

⑴出示圆柱:如果想知道这个容器的容积,怎么办?

⑵出示圆锥:如果想知道这个容器的容积,怎么办?

2、教学例五

⑴引导观察:这个圆柱和圆锥有什么相同的地方?

⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?

⑶讨论:可以用什么方法来验证你的估计?

⑷分组验证;引导学生用适合的方法进行操作验证。

⑸交流:说说自己小组是怎么验证的,得到的结论是什么?

⑹讨论:

①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的三分之一?为什么?应该怎么说才准确?

②那怎么算出这个圆锥的容积呢?

③推导出圆锥体积的公式。

④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?

⑺完成“试一试”。

3、巩固练习

做“练一练”。

4、归纳总结

通过本节课你有什么收获?有哪些问题需要我们今后注意?

圆锥的体积说课稿 篇2

一.说教材。

圆锥的认识和体积计算是《人教版》内容第十二册4143页的内容。本节

课是在认识了圆柱体的基础上继续学习的内容。学习圆锥可以进一步加强学生对立体图形的认识。为了帮助学生认识圆锥体,理解和掌握圆锥体的体积计算公式,教材是从观察入手,到实践操作,让学生通过操作把抽象的卡卡尔概念具体化、形象化。让圆锥体的有关概念,体积计算公式从实践中认识,然后运用到实际生活中去。

根据教材内容,确定教学目标:

1.通过观察和演示,使学生认识圆锥体,掌握它的特征和体积计算公式,并能根据具体问题灵活应用计算方法。

2.让学生理解圆锥体积公式的推导过程,认识圆柱体和圆锥体之间的关系,渗透辨证思维的方法。

3.通过实际操作,培养学生动脑、动手的能力,让学生养成严谨、仔细的良好习惯。

4.培养学生观察、比较、分析、判断推理的能力,发展学生空间观念,提高学生想象能力和逻辑思维能力。

教学重点难点和关键:

1.重点:

(1)认识直圆锥并掌握它的一些特征。

(2)圆锥体的体积计算。

2.难点:

(1)圆锥体体积计算公式的推导。

(2)解答有关直圆锥体实物体积。

3.关键:要充分应用直观教具和电脑,进行演示和实验,有目的、有步骤地引导学生观察、思考,从而推导出计算公式和有关概念。

二.说教法和学法。

根据教材的内容和学生的年龄特征,我采用以下教法和学法:

1.直观操作,突破难点。

在这节课中,充分运用实物让学生认识直圆锥,通过圆锥体的点,线,面,认识圆锥体的底和高。发挥学生四人小组的作用,大胆放手让学生动手操作,推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。通过动手操作,让学生用多种感官去感知事物,获取感性知识,使操作与思维紧密结合,加深对直圆锥及体积的认识。

2.运用电脑课件的动感突出重点。

圆锥体的认识是本节课的重点,为了让学生充分地认识圆锥体,把生活中的锥形物体放在屏幕上(如小麦堆,漏斗等),运用电脑闪动形式认识圆锥体的底面,侧面,顶点,高。认识圆锥体积的大小也是本节的重点和难点内容,为了突出重点,突破难点,着重引导学生去探索等底等高的圆锥体与圆柱体体积之间的关系,充分运用电脑屏幕显示操作推导过程,把静态转化为动态,加深学生对所学知识的直观印象,生动、形象、具体的教学使学生能够由具体到抽象,由感觉到知觉进行顺利的过渡。

3.注意培养学生的发散性思维和创新意识。

创新教育是素质教育的核心,因此在课堂教学中注意培养学生的发散性思维和创新意识。在认识圆锥体的过程中,引导学生思考,发现,认识圆锥体的特征。在认识圆锥体的体积的过程中,引导学生积极地去和等底等高的圆柱体的体积进行比较,通过对比、分析、综合、归纳出圆锥体的体积计算公式。学生在充分认识了圆锥体和圆柱体之间的关系的基础上,从不同方面对学生进行练习,启发学生做一些有创新能力的题目,让学生充分发挥自己创造力的空间,培养学生发散性思维能力。

三. 说教学程序设计。

悬念引入。

首先让学生回忆近来学习了什么立体图形(圆柱体),在电脑屏幕上展示圆柱体和圆锥体的实物,让学生认识圆柱体,说出圆柱体的体积公式,然后提问:屏幕上还有一些什么图形呢?(这样做一方面可以让学生初步感知圆锥体,另一方面既能激发学生的学习兴趣,又能培养学生***思考的能力。)

探究新知。

1.圆锥的认识。

(1)圆锥的组成。

①面。圆锥有几个面?哪两个面?

②棱。提问:圆锥有几条棱?是什么样的一条棱?

③顶点。提问:圆锥有没有顶点?有几个顶点?

④高。提问:圆锥的高在哪里?教师出示圆锥教具(电脑显示),把它一分为二,让学生观察,得出高的概念。

提问:圆锥旁边(手示圆锥侧面)这个长度是不是圆锥的高?圆锥有几条高?(一条高)

(2)圆锥的特征。

①一个底面是圆形。

②一个侧面展开图是扇形。(通过电脑演示得到。)

(3)指导学生看圆锥立体图。

2.圆锥体积公式推导。

(1)电脑出示木制圆柱体铅笔,用卷笔刀将前段削成圆锥后提问:削后的这一段是什么物体?这个圆锥是由什么物体削成的?这个圆锥体和原来这段圆柱体底面积和高有什么联系?两个体积有什么关系呢?(让学生发表意见)

(2)出示等底等高的圆柱体玻璃容器和圆锥体玻璃容器。

①教师演示圆柱和圆锥等底等高,并板书:等底等高。

教师演示,学生观察:将圆锥体容器里面装满黄沙后,往圆柱容器里面倒,

连续倒三次,圆柱体容器刚好倒满。

②指导学生四人小组做倒沙子实验。

四人小组组长演示,其余同学观察,发现圆柱体积和圆锥体积之间有什么关系。

(3)提问:把圆锥里装满的黄沙倒入圆柱里后,沙占圆柱容积的多少?这样倒了几次后,才装满圆柱容器?这实验说明等底等高的圆锥和圆柱体积有什么关系?

(教师板书;圆锥的体积等于和它等底等高的圆柱体积的三分之一。)

教师出示不等底不等高的圆柱和圆锥容器,让学生观察教师的演示,提问:圆锥体积是这个圆柱体积的三分之一吗?为什么?学生讨论。

(4)提问:我们已经知道圆柱体积公式:V=Sh,那么与它等底等高的圆锥体积公式应是什么?

(教师板书:V=1/3 Sh。)

提问:这个公式里,Sh是求什么?为什么要乘以1/3?要求圆锥的体积应该知道什么条件?

3、公式应用。

(1)出示例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米。这个圆锥体的体积是多少?

学生口答,教师板书。

V=1/3Sh 板书后提问:1912是求什么?

=1/31912 如果不乘以1/3是求什么?

=76(立方厘米)

答 :(略)

(2)如果题目不告诉底面积,而是告诉底面半径是3厘米,怎样求圆锥体积。

学生练习,教师讲评(略)。

目的是培养学生的发散性思维和创新意识。

巩固练习。

1、求下列各圆锥的体积。

(1)底面积30平方厘米,高5厘米。

(2)底面半径4分米,高是3分米。

(3)底面直径12厘米,高是10厘米。

(4)底面周长31.4厘米,高6厘米。

2.求下面各物体的体积。(单位:厘米)

目的是让学生运用所学的知识解决实际问题。

3.讨论题:把一个体积是60立方厘米的圆柱体木块,削成一个最大的圆锥体,圆锥体的体积是多少?削去的体积是多少?

通过讨论,让学生把所学的知识,形成技能技巧,培养学生的创新能力。

归纳小结。

通过这节课的学习,学生认识了圆锥体,掌握了圆锥体的体积计算方法,能解答有关实际问题,进一步发展了学生的空间概念和抽象思维能力。

四. 说板书设计。

圆锥的认识和体积计算

圆锥的组成: 计算方法:

面:(两个面) 棱:(一条棱) 圆柱体积公式:v=sh

顶点:(一个顶点) 高:(一条) 圆锥体积公式:v=1/3sh

例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米,

求这圆椎的体积是多少?

学生口答,教师板书:(略)

这板书简明扼要符合大纲要求,体现了这节课的主要内容,突出了本节课重点和难点,便于学生学习和掌握,展现出承上启下、循序渐近的过程,围绕着圆锥体的认识和体积计算,概括出了明确的中心。

五. 几点说明。

根据直观性原则,引导学生观察、操作、实验、归纳、小结,认识圆锥体和体积计算公式。根据理论与实践相结合的原理,运用所学的圆锥体的体积计算公式解决实际问题。根据学生的认知过程循序渐近地布置一些练习,培养学生的空间思维,发散性思维和创新思维能力。

圆锥的体积说课稿 篇3

一、教材分析

本节课是北师大版数学教材六年级下册第一单元第11~小确幸什么意思12页的内容——圆锥的体积。

这部分内容是发展学生空间观念的内容,也是小学阶段几何初步知识的最后一个内容,是学生在了解和理解了体积和容积的含义基础上,进一步了解圆锥体积或容积;在研究了圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的过程,进行圆锥体积计算方法的探索。内容包括了解圆锥体积或容积,理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。

二、学生情况

学生已经直观认识了长方体、正方体,掌握了长方体、正方体体积的计算方法,在前面的课时中也已经经历了“类比猜想——验证说明”的探索过程,通过已有的长方体、正方体体积计算方法,学习了圆柱的体积计算方法,在此基础上,让学生再次经历类比探索去学习圆锥体积计算方法。但长方体、正方体和圆柱都是直柱体,类比和猜想圆柱体积计算方法对学生来说比较容易,但是圆锥不是直柱体,因此在探索活动中,需要引导学生提出合理的猜想。学生对这部分内容的掌握,不仅有利于掌握立体图形之间的本质联系,提高几何体知识掌握水平,同时也利于提高运用所学数学知识和方法解决一些简单实际问题的能力。

三、教学目标

根据新课标的具体要求,和本节课的教学内容,结合学生实际制定了以下教学目标。

知识目标:

1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

2、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确计算圆锥体积。

3、能运用圆锥体积的计算方法,解决有关实际问题。

能力目标:

培养学生的观察、操作能力,进一步丰富对空间的认识,建立空间观念,发展学生的形象思维,增强学生的应用意识。

情感目标:

能积极参加实验活动,培养学生探索的精神和小组合作的意识。

四、教学重、难点

重点:圆锥体积的计算。

难点:理解圆锥体积与圆柱体积的关系。

关键:经历“小实验”活动,在活动中发现规律。

五、教法、学法

本节课,在教法和学法上力求体现以下两方面:

1、以讲解法、教具操作法、实验法为主,实现教学目标,在教学中,即充分发挥学生的主体作用,调动学生积极主动地参与教学全过程。

2、教学充分发挥学生的主体作用。通过自己操作实验、观察比较、讨论小结,发现圆柱与圆锥的体积关系,从而推导出圆锥的体积计算公式。

六、教具准备

等底等高的圆柱体和圆锥体容器,不等底等高的圆柱和圆锥。

七、教学环节

环节一复习铺垫

回忆并应用圆柱体积计算公式。通过练习巩固对圆柱体积计算公式的认识,为下面学习圆锥体积计算公式作好铺垫。

环节二探索新知。

首先出示教材中的情境图,并提出问题:求这堆小麦的体积,实际上就是求什么?引导学生结合情境来进一步体会圆锥体积的含义。接着直接揭示课题——研究圆锥体积计算方法。

探索圆锥体积计算方法。分为以下几个步骤完成。

步骤一:引导学生回忆圆柱体积计算方法的推导,这样,学生可以利用类比迁移规律,从求圆柱体积的思路、方法中得到启示。然后让学生思考:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?学生很容易根据圆柱和圆锥的底面都是园,来联想到转化成圆柱。

步骤二:放手让学生大胆的猜想如何计算圆锥的体积。学生很容易想到如果是用底面积乘高,计算出来的是圆柱的体积,而直觉会让他们想到圆锥的体积应该比圆柱体积小,但这个时候他们并没有意识到“等底等高”。让学生继续猜想应该是圆柱的几分之几,并说明猜想的依据。在猜想过程中,学生可能得出的结论多样,这个时候针对不同的结论,如:圆锥体积是圆柱体积的二分之一;圆锥体积是圆柱体积的三分之一等。教师随即出示几个大小不同,且不等底等高的圆柱和圆锥让学生仔细观察,比如:大圆锥和小圆柱,或者底面积(高)相同,但是高(底面积)不相同的圆柱和圆锥。通过观察让学生发现高和底面积如果不相同,不能找到与圆锥的关系,因此只有圆柱和圆锥等底等高才便于我们研究。

步骤三:实验活动。在学生形成猜想后,再引导学生“验证说明”自己的猜想。展开分组活动,让学生参与操作实验,用一个空心的圆锥装满水或沙子倒入等底等高的圆柱容器中,看几次能倒满;然后再把圆柱中装满水或沙子倒入等底等高的圆锥容器中,需要倒几次才能倒完,并做好观察记录。让学生初步感知等底等高的圆柱和圆锥体积之间的关系。接着教师用一对等底等高的圆柱和圆锥。

圆锥的体积说课稿 篇4

说教材

“圆锥的体积”是人教版小学数学第十二册第二单元的内容。是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体以及圆柱体这三种立体图形的基础上进行教学的。主要内容包括理解圆锥体积计算公式和公式的具体运用。学生掌握这些知识,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系,为学生学习初中的几何知识打下基础,同时也可提高学生运用所学的数学知识和方法解决简单实际问题的能力。

依据数学课程标准的理念,结合教材自身的特点和学生的认知规律,本节课需要达到的教学目标有以下几点:

1.通过实验,使学生理解和掌握求圆锥体积的计算公式,并能运用公式正确计算圆锥的体积。

2.培养学生初步的空间观念、观察、操作能力和逻辑思维能力。

3.向学生渗透“事物之间相互联系”及“理论来源于实践”的观点。

其中,教学重点是使学生理解和掌握圆锥体积的计算公式;难点是通过实验理解圆柱和圆锥等底等高时体积间的倍数关系。

说教法、学法

根据本节课的内容特点,同时也为了更好的完成教学目标,突出重点、突破难点,本节课,我主要采取让学生做实验的方法,通过动手操作、直观演示,让学生在充分感知中主动获取知识,理解和掌握圆锥体积公式,这样就克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解的弊病。学生则在教师的引导下充分发挥自身的主体作用,通过自己的操作、实验、观察比较、讨论小结推导出圆锥体积的计算公式,从而初步学会运用实验的方法探索新知。

说教学准备

为了提高教学效率,课前需要准备好多媒体课件,并为每个小组准备一盆水及一个圆柱和两个圆锥,另外还要为每个小组准备实验记录表一份,

说教学过程

熟悉教材只是上好一节课的基础,而合理科学的教学程序才是上好一节课的关键。为了顺利完成本节课的教学任务,我精心设计了一下教学程序。主要分为以下几个环节:

下面我就从这五个环节说一说本节课的教学过程:

一、情境引入

良好的导入是一节课成功的关键,它不仅能抓住学生的心弦,促使学生情绪高涨,步入智力兴奋状态,还有助于帮助学生获得良好的学习效果。

根据本节课圆锥体积公式的推导要用到等底等高的圆柱与圆锥这一具体情况,本环节我设计了这样一个情境:今天我们班来了一位新朋友:淘气。淘气想请同学们帮忙解决一个小问题,同学们愿意吗?事情是这样的:淘气的学校门口有一个卖瓜子的小摊,老板为了省事,不用称称着卖,而是用硬纸板做了两个容器,(大屏幕出示底为12。56平方厘米,高为6厘米的等底等高的圆柱和圆锥形容器)老板总是这样给同学们宣传:我的这两个容器,底一样高也一样,如果你用圆柱形容器买一元钱只能装一次,如果用圆锥形容器买一元钱则可以装两次。同学们,请你们帮淘气想一想,淘气应该用那种方法卖瓜子呢?问题抛出后,给同学们一定的思考时间,然后让同学们各抒己见。同学们的想法不同,当然答案也就不同,这是教师抓住时机再次提问:要想知道那种方法划算,必须怎么办?当学生提出计算体积时,就会发现所学知识不够用了,学生的求知欲望自然被调动起来,这时出示课题:圆锥的课题。

二、探索研究

此时的学生极想知道圆锥体积的计算方法,这时教师给学生提出一个疑问:在我们学习圆柱体积时我们已经清楚:长方体、正方体、圆柱的体积都可以用底面积乘高求得,那么圆锥的体积能否用底面积乘高来求呢?学生通过观察等底等高的圆柱与圆锥不难发现,底面积乘高求得的是圆柱的体积,这时教师再加以引导:能否利用圆柱的体积来求圆锥的体积呢?为每组同学提供交流的时间,让学生明白,只要弄清它们之间的关系,就能利用圆柱的体积求出圆锥的体积。究竟它们的体积之间有什么关系呢?先将圆锥放入圆柱中估计一下。我们要让事实说话。

引导学生做实验发现等底等高的圆柱与圆锥体积之间的关系。为了保证实验能有序有效地开展,实验前要对学生提出明确的要求:

1、组长要明确分工,确定检测员、操作员、记录员。

2、各小组做两次实验,两次方法可以相同也可以不同,要保证实验过程及结果的准确性。

让学生做两次实验的目的,是让学生再次确定实验的结果。当学生完成后,请各组同学进行汇报交流。学生通过实验会发现在等底等高的情况下圆锥体积是圆柱体积的1/3。教师板书。为了再次向学生强调等底等高,教师可以问学生:你们的学具都等底等高吗?让各组学生举起自己的学具。老师发现我们各组之间的学具大小不同,结论怎么相同呢?使学生明白,在等底等高的情况下圆锥体积总是圆柱体积的1/3。这时教师再次质疑:如果不等底等高还会存在这层关系吗?小组之间交换圆锥再次做实验,再次强调等底等高。

三、综合归纳

利用板书,让学生观察,圆锥的体积我们可以怎样进行计算?得出公式:圆锥体积=底面积×高×1/3。

用字母表示:v=1/3sh

然后请同学们仔细阅读所得的结论,你认为哪些字、词比较关键?为什么?要求圆锥的体积必须知道哪些条件?对公式的辨析不仅可以使学生深入理解公式,而且可以避免学生在运用公式时出现错误。

四、合理应用

上课时的情境激发了学生的求知欲望,如果能够解决这一问题,一定能让学生获得成功的体验,因此本环节我安排学生解决的第一个问题是:采用哪种方法更划算?让学生利用条件计算圆柱与圆锥的体积。这样做不仅前后呼应,而且也能让学生再次深入理解圆锥的计算公式。

第二个问题,则是利用例2改编的一个情境:淘气的同学晶晶看到同学们帮淘气解决了问题,也想请同学们帮个忙,利用多媒体出示:麦收季节,晶晶家把收的小麦堆成了一个近似圆锥形的小麦堆,测得底面直径是4米,高是1。2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整数)。教师做简单引导:要解决这一问题必须先求什么?然后让学生***完成,再利用展台展示个别学生的解题过程,并请学生谈一谈自己的解题思路。

五、能力拓展

此时学生可能已经有些满足,如果继续毫无意思的练习,必将降低其学习的积极性,为此这一环节我就将练习题起了两个有趣的名字:火眼金睛和智力大比拼,以此来激发学生的学习兴趣。同时培养学生用所学知识解决实际问题的能力。这实际上是对圆锥等于与它等底等高圆柱体积的1/3的又一次体会。

1、火眼金睛

火眼金睛其实是几道判断题,希望同学们能像孙悟空一样利用自己的火眼金睛能识别出几句话的对错呢。

1)、圆锥体积是圆柱体积的1/3。

2)、如果圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。

3)、等底等高的圆柱与圆锥,圆锥体积比圆柱体积小2/3。

通过这样几句话的判断,可以让学生深入的思考等底等高的圆柱与圆锥体积之间的关系,教师也可以从学生判断的正误上了解一下学生是否对这类应用题已经掌握。

2、智力大比拼

智力大比拼则是在判断题的基础上,来解决一道实际问题,题目是这样的元旦快乐:有一个高9厘米,底面积是20平方厘米的圆柱形容器,里面装满了水,用一个与它等底等高的实心圆锥挤压,最后能挤出多少水?还剩多少水?如果有学生不明白题意,可利用手中的学具进行直观演示。这样也更有利于学生理解等底等高的圆柱与圆锥体积之间的关系。

六、全课总结:

学生学了一节课,究竟学会了什么,让他自己说说看,当然,从学生的回答中教师也可以看出自己的教学任务是否完成,课上的是否成功。

圆锥的体积说课稿 篇5

一、说教材

1、教材简析

首先说一说这节课的内容。圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。(播放课件)圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。(播放体积公式课件)

2、学情分析

通过前几节课的学习,学生已经对圆柱、圆锥的基本特征和各部分名称有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。绝大多数学生的动手实践能力比较强,但学生的空间想像能力因年龄特点,还有待进一步加强训练。

3、教学目标

根据以上所述我制定了这节课的教学目标:

知识与技能目标:理解并掌握圆锥体积公式tplink登录的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

过程与方法目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

4、教学重难点

根据学生学情和教学目标,我确立了以下教学重难点。

教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。

教学难点:理解圆锥体积公式的推导过程。

5、教具、学具准备

多媒体教学软件、空心圆柱、圆锥容器、装有水的水桶。

二、说教法

《数学课程标准》明确指出,教师应激发学生的学习积极性,给学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、思想和方法,获得广泛的数学活动经验。本节课我主要采用引导发现法、实验操作法,同时借助多媒体等教学手段,增大教学容量,提高教学质量。

波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课堂上设计的实验,让学生动手操作,推导出圆锥的体积公式,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。

三、说学法

有句话说的非常好“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、***思考、合作探究。因此我在讲求教法的同时,更重视对学生学法的指导。

1、实验转化法

有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

2、尝试练习法

苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学例题时,让学生尝试自己***解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

四、说教学程序

本节课我设计了以下六个教学程序:

1、复习旧知,做好铺垫。

利用复习圆柱、圆锥的认识和圆柱的体积公式的推导及其应用,为新知识的迁移做好铺垫。通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切,从而产生学习新知的欲望。

2、谈话激趣,导入新课。

很多同学都喜欢吃冰淇淋,你们看,冰淇淋蛋筒的形状是什么样的?你们有没有想过一个圆锥形蛋筒能装多少冰淇淋呢?(板书课题)怎样求它的体积?能不能把它转化成我们已经学过的图形的体积来求?转化成什么图形最合适?猜猜看?下面我们就来探讨这个问题。(通过一系列问题聊天,激发兴趣,活跃气氛引出课题)

3、实验操作,探究新知。

这个环节分三个步骤进行。

第一步:实验操作

学生通过刚才的谈话已经迫切希望通过实验来证实自己的猜想,所以学习兴趣盎然,注意力高度集中,积极投入到实验中。

1、我准备出一个圆柱和一个圆锥容器,先让学生们自己观察两个物体的联系,引导他们说出等底等高。(此过程我会拿着两个容器到学生中去让他们不仅仅能看到还能摸一摸,从而更直观的感受等底等高。)

2、质疑生趣

我会抛出问题:同学们你们说如果把圆锥倒满水然后往圆柱里放,几次能把圆柱也放满水?(让学生根据自己的认知大胆猜测)

3、动手操作,实验出真知

带着疑问、猜测做实验。请两组学生进行操作,其他学生一起帮他们做记录。实验1%2结果就是三次能装满。(播放课件演示实验过程)

4、反复质疑,实验解决

是不是所有的圆锥都是正好用三次就倒满这个圆柱呢?(强化对等底等高的理解,小组讨论各抒己见)这时拿一个小一点的圆锥容器继续做一次实验。实验证明只有等底等高的圆锥装满水往圆柱里倒需要三次。

第二步:推导公式

1、讨论:圆锥的体积与圆柱的体积有什么关系?让学生充分交流。最终达成共识圆柱的体积是等底等高圆锥体积的3倍,即圆锥体积是等底等高圆柱体积的。这时我利用多媒体演示圆柱容器里的水体积的分解,再次肯定学生自己的观点的准确性。

2、圆锥的体积怎样计算?计算公式是什么?根据学生的回答板书:(出示课件)V锥=1/3 SH本步骤从感性认识上升到理性认识,进一步理解和巩固新知,培养学生严谨的逻辑思维能力,语言表达的条理性、准确性,突出教学重点。

4、尝试练习,巩固提高。

以上两道题,指名学生板书解题过程,集体订正。及时把探索到的新知应用于实践,教师从中得到教学信息反馈以便调整教学内容,学生体验到“再创造”与“成功”的喜悦,进一步激发他们学习的自主性。

5、拓展深化,综合运用

工地上有一个近似于圆锥的沙堆。你能想办法算出它的体积吗?说说测量和计算的方法。

练习设计从基本题入手,过渡到变式题,发展到综合题,引伸到思考题,符合由浅入深、循序渐进的教学原则。练习过程中训练了学生的解题能力和技巧,运用所学知识解决实际问题的能力。

6、评价反思,自我提升

课末,我通过聊天形式引导学生通过反思、评价,梳理本课知识点,形成系统的知识结构,进一步巩固本课教学内容。以下就是我进行的话题。

①这节课你学会了什么?这里用提问的方式引导学生回顾归纳所学知识内容、学习方法,能强化知识的理解和记忆,促进学生掌握学法。

②对自己和别人你有什么话要说?让学生对自己和别人的学习过程及学习效果进行评价,能强化自信、自立、自强意识,激发自主发展的内在动力。

③布置作业:练习四的有关练习。适量的作业可及时反馈学生学习情况,培养学生良好的学习习惯和品质。

五、板书设计

根据本课重难点和学生认知特点,我设计了简洁明了而又形象直观的板书。这样的板书设计体现了新知的形成过程,又显示了具体的解题方法,突出教学重点,形象直观。

六、教学反思

1.要联系生活学数学。在教学中我深切的体会到要让学生学好数学就一定要让他们明白:数学来源于生活,最终又应用于生活.要让学生爱数学就先让他们爱生活.这就需要我们在备课时不局限于教材,要结合生活实际去备课.2.教师一定要敢于给学生大量的时间与空间,让学生经历“发现问题——大胆猜想——实验验证——解决问题”的全过程,让他们的才能与智慧得以施展,以学生为主体的观念贯穿始终,充分发挥学生的自主性,生成和构建自己的知识体系。

3.学生课后反馈上来的问题是计算问题很大,公式会用但是计算出现问题了,以后要多锻炼学生的计算能力。

(强两点我简单的概括了这节课我的理论支撑和设计构想,第三点是课后学生反映出来的问题。)本节课我的设计体现了数学核心素养中的数感、空间观念几何直观、数据分析、运算能力及推理能力等几方面。初步探究中,效果还需有待观察。

圆锥的体积说课稿 篇6

一,说教材

本节课是西师版义务教育教育课程标准实验教科书六年级数学下册第38页—41页的内容,圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形以及长方体、正方体、圆柱体这三种立体图形的基础上进行研究的。以进一步发展学生的空间观念,为学生学习其它图形知识打下坚实的基础。为了做到有的放矢,我特制定以下

学习目标:

知识与技能目标:

掌握圆锥的体积公式,能运用公式进行计算。

过程与方法目标:

在观察、讨论等活动中探索圆锥的体积公式。

情感态度价值观目标:

体验数学与生活的密切联系,自觉养成合作交流与***思考的良好习惯。

教学重点:

圆锥体积公式的运用。

教学难点:

掌握圆锥体积公式的推导过程。

突破点:

组织学生动手做实验,引导蜻蜓资料学生动脑、动手,推导出圆锥体积的计算公式。

二.说教法、学法

教法:根据学生的认知规律、实际水平,以及教学内容的特点,本节课我以自主探究、小组合作学习方式为主,采用情境教学法、启发教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。

学法:采用分组、自主、合作、探究式的学习模式,引导学生主动学习、合作学习、创新学习,学生通过具体实践、操作、讨论、验证、总结、归纳等学生活动,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。

三,课前准备

要求每个学生自制等底等高的圆柱形容器和圆锥形容器各一个。教师准备:等底等高的圆柱体、圆锥体教具,实验用的细沙。

四,教学过程:

1、情境导入,引出课题:(3分钟)

首先我会让每个小组,抽出一个代表给大家说一说在我们生活中哪些地方可以看见圆锥体,这样做不仅给本课的讲解创设了情境,更让学生体验到了从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。然后,我会追问学生:圆锥的体积到底怎样求呢?这就是我们这节课所要探讨的主要内容,板书课题《圆锥的体积》

2、读讲结合,自主探究(15分钟)

此时我会让学生拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:1,这两个容器有什么共同的特征2。谁的体积更大?3。圆锥的体积是圆柱的多少呢?它们之间有没有一定的数量关系?

问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。

教师只需要做最好总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh

3、运用新知,解决问题(10分钟)

多媒体出示:一个铅锤高6cm,底面半径4cm。这个铅锤的体积是多少立方厘米?

=100.48(立方厘米)

答:这个铅锤的体积是100.48立方厘米。

你能计算出铅锤的体积吗?同时提问一个程度比较好的同学进行演板,演板完毕后,教师不失时机的对其做出评价,同时强调做题格式。然后,进行一题多变:

1.改变题中的半径和高的数值。

2.把半径该为直径。

3.把半径改为高,从而起到进一步巩固公式的作用。

多媒体出示:煤厂有一堆近似于圆锥的煤,煤堆底面周长18.84米,高1.8米。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1m3煤重1.4吨)

煤堆的底面积:

煤堆的体积:

1.4 16.956÷5≈5(辆)

答:需要5辆车。

学生自主解决,同组交流解题的心得。

4、圆锥在生活中的应用(多媒体展示)(2分钟)

5、运用公式,体会新知(多媒体展示)(5分钟)

6、质疑问难,总结升华(3分钟)

在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。

7、布置作业(多媒体展示)(2分钟)

圆锥的体积说课稿 篇7

一、说教材

圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体、圆柱体的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积的。内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系、提高几何知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识技能解决实际问题的能力。

教学目标是:

1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。

教学重点是:掌握圆锥体积的计算方法。

教学难点是:理解圆锥体积公式的推导过程。

二、说教法

根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过情境感知并进行猜想,再通过操作验证,从中提取数学问题,自己总结归纳出圆锥体积的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。

三、说学法

本节课学习适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。

四、说教学流程

为了更好的突出重点,突破难点,我以动手操作、观察猜想、实验求证、讨论归纳法实现教学目标;教学中充分利用几何的直观,发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

1、创设情境,提出问题

出示近似圆锥形的沙堆,接着让学生根据情境提出他们想知道的知识,很多学生都想知道沙堆的体积有多大,从而导出课题“圆锥的体积”。让学生自己提出问题,发现问题,激发了学生探索解决问题的强烈愿望。

2、探索实验,得出结论

A、动手操作

把一个圆柱形木料的上底削成一点,让学生观察削成的圆锥体与原来的圆柱体有什么关系.要求先标出上底的圆心点,不改娈下底面,注意安全。培养学生初步的空间观念和动手操作能力。

B、观察猜想

观察、比较圆柱体与圆锥体。

突破知识点(1)“等底等高”;让学生猜测圆柱体积与它等底等高的圆锥体积的关系。

突破知识点(2)圆锥体啜泣积比与它等底等高的`圆柱体积小、圆锥体积是与它等底等高的圆柱体积的1/2、圆锥体积是与它等底等高的圆柱体积的1/3;设想求圆锥体积的方法,学生***思考后交流讨论,给学生提供了联想和交流的空间,培养了他们的创新能力。

C、实验求证

学生动手实验,小组合作探究圆锥体积的计算方法。

(1)用天平称圆锥体和与它等底等高的圆柱体木料的质量;

(2)把圆锥体浸装有水的圆柱形水槽里量、算出体积;

(3)用装沙或装水的方法进行实验。这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。

通过学生演示、交流、讨论,得出圆锥体积的计算公式:

圆柱的体积等于与它等底等高的圆锥体积的3倍;

圆锥体积等于与它等底等高的圆柱的体积的1/3.

圆锥体积=底面积×高×1/3

这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。

3、应用结论,解决问题

(1)以练习的形式出示例1。

例1:一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

通过这道练习,巩固了所学知识。

(2)基础练习:求下面各圆锥的体积。

底面面积是7.8平方米,高是1.8米。

底面半径是4厘米,高是21厘米。

底面直径是6分米,高是6分米。

这道题是培养学生联

系旧知灵活计算的能力,形成系统的知识结构。

(3)出示例2。

在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是6米,高是1.2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?

通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。

(4)操作练习。

让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。

4、全课总结,课外延伸。

让学生说说这节课的收获,并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样激发了学生到生活中继续探究数学问题的兴趣。

圆锥的体积说课稿 篇8

一、说教材

(一)圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。

内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。

(二)、教学目标

1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。

3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。

(三)教学重点、难点和关键

重点:理解和掌握圆锥体积的计算公式。

难点:理解圆柱和圆锥等底等高时体积间的倍数关系。

关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。

二、说教法

以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。

三、说学法

1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。

2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。

四、说教学程序

(一)、导入课题

1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。

回答:

(1)已知底面积和高怎样求它的体积?

(2)已知底面半径、直径或周长又怎样求它的体积?

这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。

2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积

(二)讲授新知

1、(1)引入新课

引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?

(2)教学圆锥体积公式

首先,学生带着如下三个问题自学课文,(电脑出示):

(1)用什么方法可以得到计算圆锥体积的公式?

(2)圆柱和圆锥等底等高是什么意思?

(3)得出了什么结论?圆锥体积的计算公式是什么?

其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。

第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= 1/3Sh。

第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。

第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

练习:

填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是( )立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是( )立方厘米。

2、教学应用体积公式计算体积(电脑出示题目)

提高学习效率,掌握学习方法才能取得好的成绩,六年级数学下册说课稿的针对性很强,希望同学和老师都能够合理的使用!

圆锥的体积说课稿 篇9

一、教材分析

教材通过向等底等高的圆柱和圆锥倒水的实验,得到圆锥体积高尔基的读书名言的计算公式V=1/3sh。也就是等底等高的圆锥体积是圆柱体积的三分之一。教课书43页例1是直接利用公式求体积,例2是已知圆锥形小麦堆的底面直径和高,求小麦的重量,这是一个简单的实际问题,通过这个例子教学,使学生初步学会解决一与计算圆锥形物体的体积有关的实际问题。

二、学生基本情况

六年级四班,共有学生49人,其中男生20人,女生29人,以前学生对长方体、正方体等立体图形有了初步的认识和了解,七学期对圆锥、圆柱立体图形的特征进行了研究,通过学习,学生对圆柱,圆锥的特征有了很深刻的认识,对圆柱的体积,表面积,侧面积能熟练地计算,但也有少数学生立体观念不强,抽象思维能力差,因此学习效率差。

三、教学方法

由于本节课是立体图形(圆锥的体积)的学习,要培养学生学习的积极性,必须通过具体教具进行教学,从而给学生建立空间观念,培养学生的空间想象能力。

本节课我采用具体的实验,让学生发现圆柱体积与它等底等高的圆锥体积的关系,从而推导出圆锥的体积公式,然后让学生利用圆锥的体积公式,尝试计算圆锥的体积,以达到解决一些常见的实际问题的能力。

四、教学过程

本节课一开始,用口算,口答的形式引入课题,一是培养了学生的计算能力,二是为新授课作为辅垫,为学习圆锥的体积打下基础。

紧接着提示课题,以实验的方法让学生观察其规律,总结出圆锥的体积公式,这一环节是本节的难点,必须让学生理解清楚,特别是对三分之一的理解。

然后出示例题,让学生尝试解答例1,直接告诉底面积和高,可以直接利用公式计算,教师不必多的提示,只要学生会做就行。例2是已知圆锥形的小麦堆的底面直径和高,要求小麦重量,实际旧就要先求体积。

学生尝试解答后,教师特别引导,要求体积,这个题不知道底面积,则要先求底面积,二是要让学生讨论,如果这堆小麦知道直径和高,你能想办法测出来吗?这样培养了学生空间想象力。

最后,设计了三个巩固练习,都是在基本求出圆锥体积的基础上进行提高训练,这样即满足了基础知识的学习,又使优生能有所提高。搜集整理参考。

圆锥的体积说课稿 篇10

一、教材分析

圆锥的体积是在学生已经掌握了圆柱体积计算及应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时的内容。圆锥是人们生产、生活中经常遇到的形体。教学好这部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。

数学课程标准要求:教师是学生数学活动的组织者、引导者、合作者。教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。根据新课程标准的理念和教材特点以及学生的实际,我制定了如下的教学目标及教学重难点。

1、教学目标:

(1)理解圆锥体积公式的推导过程,掌握圆锥体积计算公式,能运用体积公式计算圆锥的体积。

(2)培养学生的观察、理解能力、空间观念,应用所学的知识解决实际问题的能力。

(3)使学生在经历中获得成功的体验,体验数学与生活的联系。

2、教学重点:掌握圆锥体积计算公式,能运用体积公式计算圆锥的体积以及解决一些实际问题。

3、教学难点:理解圆柱体积、圆锥体积在等底等高的条件下,体积之间的倍数关系。

4、教具准备:

(1)多媒体课件。

(2)等底等高、等底不等高、等高不等底的圆锥和圆柱若干套,沙、实验报告单;带有刻度的直尺,绳子等。

二、说教法

我国著名教育家叶圣陶先生指出:教是为了用不着教。教学有法,但教无定法、贵在得法。依据新课程标准理念和教材特点以及学生的认知规律,这节课我主要运用以下教学方法。

1、复习引入法。通过复习长方体、正方体、圆柱体的体积计算公式和推导过程帮助学生温故知新,沟通新旧知识间的联系。

2、情景教学法。通过让学生猜测圆柱体积与圆锥体积的关系,诱发学生对猜测进行验证的情景,融知识性与趣味性为一体,以情激情、以情激趣、以情促知。

3、启发分析法。通过对三次实验结果的分析、比较,培养学生问题意识,启迪学生思维,发展学生智力。

并将自主探究的学习方式贯穿于教材的全过程。恰当运用多媒体教学手段增强教学的新颖性,从而激发学生参与学习的积极性,使他们在求知的学习状态中展示个性,体验到学数学用数学的乐趣。

三、说学法

教与学密不可分,教是为了更好的学。教法是学法的导航,学法是教法的缩影。著名教育家陶行知指出:好的先生不是教书,不是教学生,乃是教学生学。鉴于这样的认识,在强调教法的同时,更要注重学法的指导。本节课在学习过程中,我主要指导学生学会以下学习方法:

1、转化迁移的方法。通过复习圆柱体积的推导过程,使学生学会发现、扑捉知识间的内在联系,促进认知水平的形成和新知的内化。

2、比较分析的方法。通过对三次实验结果的比较、分析,拓展学生的视野,防止知识混淆,提高分析问题和解决问题的能力。

3、合作探究的方法。通过在分组做实验中同学之间的交互作用,树立团体意识,促进共同提高。

四、说程序

新课程把教学过程看成是师生交往、积极互动、共同发展的过程。根据新课程理念和<<数学课程标准》的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,我对本节课的教学过程设计分为以下四个环节:

(一)创设情境,引发问题

出示长方体、正方体、圆柱体、圆锥体,问:

1、我们学过了哪些物体体积的计算方法?它们的计算公式各是什么?

2、圆柱的体积计算方法是怎样推导出来的?这节课我们就来学习圆锥的体积。(板书:圆锥的体积)

3、你认为哪一种物体体积的计算方法与圆锥有关?为什么?

4、猜测一下圆柱体积与圆锥体积有什么关系?(板书:v圆柱=3v圆锥?猜测)

(本环节通过创设圆锥体积与谁的体积关系更密切的情景,自然而然导入新课,吸引了学生的注意力,激发学生探索知识的积极性,为新课的学习做了良好的铺垫。)

5、怎样验证自己的猜测?(板书:验证)

(二)合作探索,解决问题

探索是数学的生命线,倡导探索性学习,引导学生经历知识的形成过程,是当前小学数学改革的理念。理解圆锥体积计算公式是本节课的重点,我设计了以下几个环节,让学生通过小组合作,自主探究、动手操作来发现圆锥的体积。

1、出示实验记录单

实验次数

选择一个圆柱和圆锥比较,我们发现

实验结果:它们体积之间的关系

第一次

第二次

第三次

2、师引导学生看懂实验单,按照实验记录单做实验,师巡视指导。

3、让学生介绍实验过程和实验结果。(去掉?)

4、问:做了3次实验,结果为什么不一样?

5、等底等高的圆柱体积和圆锥体积有什么关系?(板书:v圆锥=v圆柱=sh)

6、在这个公式中,s、h分别代表什么?Sh得到什么?为什么要乘?

7、求圆锥的体积要知道什么条件?

师小结:通过猜测、实验验证得出v圆锥=sh

(这样设计,让学生亲身经历知识的形成过程,在与同伴的交流、比较中不断完善优化自己的知识结构,通过自主探究、合作交流,突出重点,突破难点。)

(三)迁移应用,分层提高

练习是掌握知识、形成技能、发展智力的重要环节,根据学生的年龄特点和认知规律,由易到难,由浅入深,力求体现知识的纵横联系,我设计以下几组练习题,请看:

1、尝试解答

出示3组数据,让学生任选一组进行解答。

底面半径4厘米,高6厘米

底面直径4厘米,高5厘米

底面周长25。12厘米,高4厘米

解答完后,叫一名同学板书。

问:为什么都选底面半径和高?

小结:求圆锥的体积,先求出圆锥的底面积,再根据公式求出圆锥的体积。

2、例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1。5米。你能计算出小麦堆的体积吗?

(生***列式计算全班交流)

3、判断

(1)圆锥体积等于圆柱体积的。

(2)圆柱体积大于与它等底等高的圆锥体积。

(3)圆锥的高是圆柱的3倍,圆锥体积等于圆柱体积。

4、填空

(1)一个圆柱的体积是6立方米,与它等底等高的圆锥体积是()。

(2)一个圆柱和一个圆锥,底面半径和高都相等,圆锥的体积是18立方米,圆柱的体积是()。

(这个环节的设计,第1、2两题主要是突出本节课的重点,能运用体积公式计算圆锥的体积以及解决一些实际问题;第3、4两题是突破本节课的难点,理解圆柱体积、圆锥体积在等底等高的条件下,体积之间的倍数关系。这些习题的设计,起到巩固提高的作用。体现数学来源于生活,运用于生活。)

(四)总结评价,激励发展

课堂总结是对本节课所学知识进行归纳和总结,以及对学生学习情况的评价,因此我设计了以下几个问题:

1、上了这些课,你有什么收获和体会?

2、你还有什么新的想法?还有什么问题?

(这样不仅能够帮助学生巩固新学的知识,完善知识结构,提高整理知识的能力,还能使学生体验到探索成功的的乐趣,树立学好数学的信心)

圆锥的体积说课稿 篇11

一、教学内容:

义务教育课程标准实验教科书(北师大版)六年级下册第11~13页。

二、教学目标:

1、知识技能目标:

使学生探索并初步掌握圆锥体积一心一意爱你的计算方法和推导过程;

使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:

提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

3、情感态度目标:

使学生在经历中获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:

重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

难点:探索圆锥体积的计算方法和推导过程。

四、教具准备:

1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。

五、教学过程:

(一)创设情境,导入新课

1、故事情景 引发猜想

电脑呈现出动画情境(伴图配音)。

炎热的夏天,小明和小强去“广场超市”的冷饮专柜买冰淇淋,圆锥形的冰淇淋标价是0.8元,圆柱形的标价2元。于是,他们两个为买哪一种形状的冰淇淋争执起来。同学们,你们能帮他们解决到底买哪种形状的冰淇淋更合算吗?(图中圆柱形和圆锥形的雪糕是等底等高的。)

(学生回答自己的猜想,有说买圆锥形的,有说买圆柱形的)

教师:学完今天的内容后,同学们就能正确解决了!

2、圆锥实物 揭示课题

①教师出示一筒沙,师:将这筒沙倒在桌上,会变成什么形状?

(学生猜想后教师演示)

②师:在这堂课上,你希望学到哪些知识呢?

(生自主回答,确立学习目标)

③揭题:圆锥的体积

师:好,我们一起努力吧!

(二)自主探索,合作交流

1、直观引入 直觉猜想

(1)教师演示刨铅笔:把一支圆柱形铅笔的笔头刨成圆锥形。

(2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?

① 教师鼓励学生大胆猜想。(生说可能的情况)

② 师:你们是怎样理解“相应的”一词的?说说你的看法。

生说后,师总结:“相应的”,即圆锥与圆柱是等底等高的。(用实物演示给生看)

2、实验探索 发现规律

(1)小组讨论填写材料单,有顺序地领取材料

学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、米、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子、米等,等底不等高和等高不等底的圆柱形和圆锥形容器各一个)

(2)小组合作实验,并填写实验报告单。

实验方法 发现结果

第一次实验

第二次实验

第三次实验

结论:

(3)汇报结果,实物投影展示实验报告单。

(4)组际交流,得出结论:

结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。

结论2:等底不等高的圆锥体与圆柱体,圆锥的体积是圆柱体积的二分之一。

结论3:等高不等底的圆锥体与圆柱体,圆锥的体积是圆柱体积的四分之一。

结论4: 圆柱的体积正好是圆锥体积的3倍。

结论5: 圆柱的体积是等底等高的圆锥体积的3倍。

……

师:同学们实验的结论各不相同,到底哪组的结论对呢?

(各小组纷纷叙述自己小组的实验过程、结论;说明自己小组的准确性,学生的思维处于高度集中状态)。

(5)参与处理信息。

围绕三分之一或3倍关系的情况讨论:

师: 我们先来看得出三分之一或3倍关系的这几个小组;请小组代表说说他们是怎样通过实验得出这一结论的?

(请他们拿出实验用的器材,自己比划、验证这个结论。突出他们小组的圆柱和圆锥是等底等高的)

师:其他小组得出的结论不同,是不是由于实验过程或结论有错误呢 ?我们也请小组代表说说你们的看法。

(生说明他们的过程和结论都是对的,只是他们的圆锥和圆柱不是即等底又等高的)。

师:总结以上各个小组的看法,我们可以得出什么样的结论?

生1:圆锥的体积等于和它等底等高圆柱体积的三分之一。

生2:圆柱的体积是等底等高的圆锥体积的3倍。

生3:我认为第一种说法较合理,强调了圆锥体积的求法。

……

师总结并板书:

圆锥的体积等于和它等底等高的圆柱体积的1/3。

3、启发引导 推导公式

师:对于同学们得出的结论,你能否用数学公式来表示呢?

生:因为圆柱的体积计算公式V=sh;所以我们可以用1/3 sh表示圆锥的体积。

师:其他同学呢?你们认为这个同学的方法可以吗?

生:可以。

师:那我们就用1/3 sh表示圆锥的体积。

计算公式:V= 1/3 sh

师: (1)这里Sh表示什么?为什么要乘1/3?

(2)要求圆锥体积需要知道哪两个条件?

生回答,师做总结

4、简单应用 尝试解答

例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?

(生***列式计算全班交流)

(三)巩固练习,运用拓展

1、试一试

一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?

2、练一练

计算下面各圆锥的体积:

3、实践性练习

师:请你们将做实验时装在圆柱容器里的沙(或米)倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。

4、开放性练习

一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)

(四)整理归纳,回顾体验

1、上了这些课,你有什么收获?(互说中系统整理)

2、用什么方法获取的?你认为哪组表现最棒?

3、通过这节课的学习,你有什么新的想法?还有什么问题?

(五)问题解决。(电脑呈现出动画情境)

小明和小强到底买哪种形状的冰淇淋更合算呢?

师:谁能帮他们解决这个问题呢?

(学生说出买圆柱形的冰淇淋更合算的理由。)

<

本文发布于:2023-05-12 22:32:58,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/86/670782.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:圆锥   体积   说课稿
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图