作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?这里我给大家分享一些最新的教案范文,方便大家学习。
认识可能性教案篇一义务教育课程标准实验教科书(西师版)四年级上册第125~126页例1、例2,第127页课堂活动,练习二十五第1题。
【教学目标】
1.能在活动中初步体验有些事件的发生是可能的,有些则是不可能的。
2.在具体的情景中能用“一定”、“可能”、“不可能”等术语来判断生活中的确定现象和不确定现象。
3.体验数学与生活的联系,培养学生猜想、分析、判断、推理以及语言表达能力。
【教学重点】
在具体的活动情景中体验生活中的确定现象和不确定现象。
【教学难点】
能用比较规范的数学语言对确定现象和不确定现象进行分析描述。
【教具学具准备】
硬币、装乒乓球的盒子等。
【教学过程】
一、情景引入
1.教师:上课之前告诉同学们一个消息,我们班马上要转来一位新同学,请同学们猜一猜,是男同学还是女同学?”
2.学生猜:可能是男同学,也可能是女同学,不能确定,都有可能。
3.教师小结:生活中,有些事情我们可以确定它的结果,有的事情则不能确定它的结果。这节课我们一起来研究事情发生的可能性。
(板书课题)
二、探究新知
1?研究不确定现象。
(1)教师:大家喜欢玩游戏吗?我们来玩一个抛硬币游戏怎么样?抛硬币之前请同学们猜一猜硬币落地后,是
正面向上呢?还是反面向上?
(2)学生分组进行抛硬币活动,注意记录和观察硬币落地后,是正面向上还是反面向上。
(3)活动后请学生用语言描述硬币落地后,是正面向上还是反面向上,得出这件事是不确定的结论。
(4)教师引导学生用规范语言描述:同学们的这些意思,在数学上我们一般用“可能……也可能……”(板书:可能……也可能……)这个词语来描述这种不确定现象。
(5)教师小结:抛一枚硬币,落地后可能是正面向上,也可能是反面向上,在数学上,我们把像这样的,可能出现的结果不止一种,而使人们事先不能确定的现象叫做“不确定现象”
(板书:结果不止一种?不确定)。
2?研究确定现象
(1)展示盒子里的球――全是白球。学生可分组摸球后,记录摸球后的结果。教师:当盒子里全是白球时,从里面任意摸出一个,结果怎样呢?学生用自己的语言进行描述:全是白球,都是白球……
教师引导规范语言:同学们的这些意思,在数学上我们一般用“一定”这个词来说。
(板书:一定)
教师:这样放球可能从盒子里摸出黄球吗?
学生用自己的语言进行描述:不可能,不会……
教师引导规范语言:同学们的这些意思,在数学上我们一般用“不可能”这个词来说。
(板书:不可能)
教师:(展示盒子里的球――全是黄球)当盒子里全是黄球时,从里面任意摸出一个,结果又怎样呢?
学生用“一定”、“不可能”来描述摸球结果。教师小结:像这样结果只有一种,我们就用“一定”、“不可能”来描述确定现象。
三、猜想验证
1.(教师将两种球混装)提问:现在盒子里装了3个黄球和3个白球,从里面任意摸出一个,会是什么球呢?教师引导学生用规范语言来描述摸球结果。
2.小组摸球,试验验证。
(1)试验要求。
教师:老师给每组都准备了一个盒子,里面有3个黄球和3个白球。请组长负责安排,小朋友按次序摸球。
要求:
①每人可以摸两次,摸之前要先想想:会摸出什么球呢?然后再摸。
②组内的记录员要将小朋友每次摸球的结果记录下来。
③每次摸出的球要放回盒子里摇一摇,再继续摸。教师:比一比哪个小组最会合作,小组活动开展得又快又好。小组活动,教师巡回指导。
(2)教师小结:完成教科书127~128页1~3题。
2.讨论生活中的不确定现象。
教师:生活中,哪些是可能发生的事情?哪些是一定要发生的事情?
教师举例,引导思考,如:“猜中指”、“石头、剪子、布”等游戏。教师:谁来介绍一下这些游戏?你能预测一下结果吗?
教师小结:可能出现的结果不止一种,是事先不能确定的。
学生举例,分析游戏结果。
教师:想一想,平常你还玩过哪些游戏,或者你能不能自己来设计这样一个游戏,使它可能出现的结果不止一种,是事先不能确定的。
要求:独立思考,同桌互玩,边玩边想:这个游戏的结果是确定的吗?为什么?
学生汇报交流。
教师小结:刚才大家说的这些有趣的游戏,它可能出现的的结果不止一种,在玩之前是不能确定的,属于数学上的“不确定现象”。也正是因为结果的不确定,人们才可以反复玩,在可能出现的结果中去感受无穷的乐趣。
四、全课小结
教师:今天我们研究了什么知识?你有哪些收获?
认识可能性教案篇二1、 经历猜测、试验、收集与分析试验结果等活动过程。
2、 初步体验有些事件的发生是确定的,有些则是不确定的,能区分确定事件与不确定事件。
3、 知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,能列举出简单试验所有可能发生的结果,并和同伴交换想法。
1.在一定条件下,肯定会发生的事情称为 必然事件 ;在一定条件下,一定不会发生的事情称为 不可能事件 ;必然 事件与 不可能 事件都是确定 的;在一定条件下,可能会发生,也可能不会发生的事件称为 不确定 事件。
2.在“转盘游戏”中,哪个区域的面积大,则指针落到该区域的 可能性 大。
例题1:下列事件中,哪些是必然事件?哪些是不可能事件,哪些是不确定事件?
(1)一年有12个月; (2)掷一枚一元硬币,停止后国徽朝上;
(3)明天要下雪; (4)1/4周角=1直角;
(5)任意买一张电影票座位号是奇数;(6)小明的生日是2月30日;
(7)一条鱼在白云中飞翔。
分析与解:(1)、(4)是必然事件;(6)、(7)是不可能事件;
(2)、(3)、(5)是不确定事件。因为(6)中2月只有28天,不可能有30日,所以是不可能事件。
注意:在判别事件是确定还是不确定,关键是根据一定的条件弄清它是一定会发生或一定不会发生,还是无法肯定它会不会发生。
例题2:医院的护士给病人注射青霉素类药水时,要先做皮试。但根据有关数据显示,只有大约千分之一的人对青霉素过敏,但护士为什么每次都这样做呢?这样做是不是多此一举?
分析与解:青霉素过敏的可能性只有千分之一,但它总是有可能发生的,我们不能确定每一个注射的病人都不会过敏,因此“青霉素过敏”这一事件是可能事件。为了每位病人的生命安全,一定要先做皮试,此种做法不是多此 一举。
注意:“不太可能事件”虽然可能性很小,但它仍有可能发生。
例题3:一只蚂蚁在如图所示的一块地板上爬行,这块地板由黑白两种不同颜色外其它完全相同的地砖铺成,爬行一段时间后,蚂蚁停在哪种颜色地砖上的可能性大,为什么?
分析与解:
因为白色的块数是10,黑色的块数是6,白色区域的面积大,所以蚂蚁停在白颜色地砖上的可能性大。
注意:有关可能性问题,有时可通过比较各种区域所占面积的大小来确定。
例题4:袋中有4只红球、2只白球、1只黄球,这些球除了颜色以外完全相同,小华认为袋中共有三种不同颜色的球,所以从袋中任意摸出一球,摸到红球、 白球、黄球的可能性一样大,小强认为三种球的数量不同,摸到红球、白球、黄球的可能性肯定也不同,你认为谁说的正确,并说明理由。
分析与解:
注意:此题中摸到各种颜色球的可能性大小只与该球的颜色有关,与该球的大小、形状等其它因素无关。
1、能举例说明生活中的不确定事件,并能用“不可能”、“有可能”、“几乎不可能” 等词语描述它们发生的可能性大小。
2、了解事件发生的可能性是有大小的,并初步学会求不确定事件的可能性大小。
3、能养成独立思考的习惯,学会与同伴充分交流的良好学习方式。
认识可能性教案篇三本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。
等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。
在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。
教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。
在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。
在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。
另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。
认识可能性教案篇四人教版《义务教育课程标准实验教科书 ? 数学》年级上册教科书第104页主题图及第105页例1、例2。
①通过猜测和简单试验,让学生初步体验事件发生的确定性和不确定性,初步能用“一定”“可能”“不可能”等词语来描述生活中一些事件发生的可能性。
②培养学生的猜想意识、表达能力以及初步的判断和推理能力。 ③培养学生学习数学的兴趣和良好的合作学习态度。
能对一些事件的可能性做出正确判断。
课件;硬币;每个小组准备两个盒子(1号盒和2号盒),8个白球,4个白球和4个橙球;水果模型。
一、游戏激趣,谈话导入
教师出示一元硬币:“这是什么?用它可以干些什么呢?”
师:利用这个硬币我们可以玩一个游戏,同学们想玩吗?
教师先介绍硬币的正面和反面,再介绍游戏的玩法。
经过好几次的“猜正反”。(学生有的猜正面,有的猜反面。)
师:结果能确定吗?
揭示课题:这节课我们一起来学习“可能性”。(板书课题)
出示主题图(第104页),联系生活,让学生发现:在生活中像这样的事件存在着可能性,这些可能性是数学课中的一项内容,可见数学就在我们身边。
二、合作学习,探究新知
(一)、小组合作摸球活动
老师给每个小组准备好两个纸盒。
请每组的组长在1号盒里放入8个白球。
1、1号盒,体验“一定”
* 猜一猜,摸一摸
请每位小朋友从1号盒里摸出一个球,每次摸球之前先猜猜是什么颜色,摸球之后看看是什么颜色,看看猜得对不对,然后用自己喜欢的方法把颜色启示录下来,记录后,把球放回盒子中摇匀,再轮到下一个同学摸。
* 议一议,说一说
各人摸完后,根据各组记录球的颜色情况讨论一下有什么发现,再汇报摸1号盒的情况和猜的结果。
师小结:当我们知道摸的结果只有一种情况时,我们可以用“一定”来描述这件事情。(板书:一定)
2、体验“不可能”
师:大家都知道1号盒里只有白球,你还想问什么问题吗?
引导学生发问:在1号盒里能不能摸出红球?蓝球呢???
让学生体验到“不可能”。(板书:不可能)
3、2号盒,体验“可能”
师:我们继续摸球,请小组长在2号盒里放入4个白球和4个橙球,然后按照摸1号盒的方法来摸球。
师:这次我们又发现了什么?(盒子里面放了白色和橙色的球,所以摸出来的可能是白球,也有可能橙球。)
师:像这种情况,我们可以用“可能”来描述。(板书:可能)
4、小结
师:通过整个摸球活动,我们发现了什么?
让学生发现,回答后。
师小结:一般事情的发生都有“一定”“可能”与“不可能”三种情况。
(二)、小组合作学习例1
课件出示课本105页例1的图。
师:请同学们找开书本105页,认真观察例1,然后小组讨论图中的问题。 学生讨论后汇报结果。
三、联系生活,巩固新知
* 请你来当判官
出示例2
师:原来,数学就在我们身边,在我们生活中处处都有“可能性”。那么,你能用“一定”、“可能”和“不可能”对下面几个与我们生活紧密相关的现象进行准确的判断和说说理由吗?
“一定”的,画√;“不可能”的,画×;“可能”的,画○。
图片已关闭显示,点此查看
小组讨论后,教师指名汇报,师生共同解决。
* 说一说
师:同学们,生活中到处都有“可能性”,你还能想哪些生活中发生的“可能性”?请大家在小组里说一说。
小组说一说后,教师指名说说。
四、实践活动,巩固新知
* 说一说
师:小精灵看到我们玩得这么高兴,他也想加入我们的游戏,大家欢迎吗? 课件出示,教师述说题意:老师把小精灵的眼睛蒙上,在3个杯子中放了一些球。一号杯放有红球、黄球、蓝球;二号杯里全部是红球;三号杯放了黄球和蓝球。现在有3个问题请同学们来解决。
① 在哪个杯子里小精灵一定能摸到红球?
② 在哪个杯子里小精灵不可能摸到红球?
③ 在哪个杯子里小精灵可能摸到红球?
* 涂一涂
课件出示书本108页第2题,让学生按要求涂一涂。
图片已关闭显示,点此查看
(注:正方体为红色,球体为蓝色,锥体为黄色)
五、巩固升华,活用新知
师徒四人西游
唐三藏:在这漫漫长的取经路上,三位徒弟保护师傅都很用功,为师准备了人参果、蟠桃和西瓜来奖赏他们,小朋友们你能帮帮我分一分这些奖品吗?不过,我这三位徒儿的口味可不一样:
孙悟空说:“我最喜欢吃蟠桃了,我要在我的袋子里任意拿一颗,都能拿到蟠桃。”
沙悟净说:“我最不喜欢吃人参果了,其他的就无所谓。”
猪八戒说:“我最喜欢吃了,要求不高,只要能吃到西瓜就行了。”
唐三藏:怎样分才能使我这三位徒儿都能满意呢?
请同学们先在小组里讨论,再合作装好奖品,然后汇报每袋的的.方法,看看哪个组装得又快又好。
六、总结评价,深化新知
说说这节课你有什么收获?还有哪些不明白、有疑问的地方?
让学生畅所欲言。
师小结:像这样存在“可能性”的问题,是数学课里面的知识,它包含“一定”、“不可能”和“可能”三种情况,它跟我们的生活是紧密相关的,请同学们回去留意一下,在我们身边还有哪些类似的数学问题,看看谁最有侦探头脑,善于发现和分析问题。
七、板书设计
一定
确定事件不可能
可能性不确定事件:可能
认识可能性教案篇五《可能性》是义务教育课程标准实验教科书(人教版)三年级上册104-105页内容。其相关知识是新课标增设的教学内容,属于统计与概率学习领域。本节课是学生首次接触有关可能性的知识,是学生对可能性的认识和理解从定性向定量的过渡。小学数学课程标准中明确指出:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。“数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……”根据这一理念,基于这样的教学内容和学生的知识基础,在设计教学时,我注重联系学生的生活经验,创设有效的教学情境,精心组织活动,为学生提供探究空间、交流平台以促进学生主动学习。
1、通过多种活动,充分体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定、可能、不可能”来描述事情发生的可能性。
2、在探索、解决问题的过程中,形成初步的判断、推理、概括能力。
3、激发学生学习数学的兴趣,产生积极的情感体验。
感受体验事情发生的确定性和不确定性,会判断生活中“一定、可能、不可能”发生的事情。
、彩球、塑料袋
师:同学们,老师最近学会了一种很神奇的魔法,想表演给大家看,你们想看吗?
生:想看。
师:老师手里有一个魔袋(一个不透明的袋子),里面装着一些彩球,请同学们从里面任意摸出一个,我能猜出它是什么颜色的。你们相信吗?
(学生有的说信,有的说不信)
师:那我们就试试吧。
(师出示一个不透明的袋子,里面装有彩球,请学生任意摸出一个球,老师都能准确猜出球的颜色。学生猜测,袋中装的都是黄颜色的球。)
师:因为袋中装的全都是黄球,所以从里面任意摸出一个,结果怎样?
师:当事情确定会发生时,我们可以用“一定”来描述。(板书:一定)
把白球倒入空的不透明的袋子中,请学生描述会摸到什么颜色的球?
[设计意图:良好的开端是成功的一半,一开始由猜球游戏导入新课,使学生很快进入最佳学习状态,兴趣盎然、主动参与。使学生在参与猜球的过程中明白“一定”的涵义,初步体验到什么有些事件的发生是“一定”的。]
师:林老师想从袋中(刚才装白球的袋)摸出一个红球,行吗?为什么?
师:确定不会发生的事情,我们就用“不可能”(板书:不可能)来描述。从这个袋中还不可能摸出什么颜色的球?
[设计意图:在学生已经理解“一定”的基础上,自然而然地引出“不可能”发生的事情,进一步体验什么情况下事件的发生是“不可能”的。至此,学生对确定性事件已经形成了初步的认识。]
师:(往只装有白球的袋中倒入若干个黄球)这时,任意摸出一个球,结果怎样?
引导:用“可能”来描述事情发生的不确定性。
请学生从装有黄、白、红球的袋中任意摸出一个球,摸之前先猜一猜可能摸到什么颜色的球。
[设计意图:让学生在猜测中主动参与,学会用自己的语言来描述事件发生的情况,为新知内化创造条件。]
师:通过刚才的活动,我们知道,当事情确定发生时,我们可以用“一定”来描述,当事情确定不会发生时,我们可以用“不可能”来描述,当事情不确定发生时,我们可以用“可能”来描述。下面,老师给大家介绍书上的几位小朋友(出示例1的插图)请同学们仔细观察,你能用“一定”、“不可能”、“可能”对正要摸棋的小朋友说些什么吗?
[设计意图:对话是课堂学习、交流不可缺少的,让学生和书本进行“对话”,学生觉得新颖有趣,乐于对话,敢于对话,在对话交流中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。]
出示例2,生独立判断,交流汇报。
[设计意图;至此,学生对本节课所学的内容已经有了一定的掌握,对于例2放手让学生独立学习,培养学生自主学习的能力。]
小组内活动:
①往袋中装球,用“一定、不可能、可能”说一句话。
②提出一个要求,根据要求来装球。
小组间活动:
小组派代表,向其它小组的同学提问题,当场解决。
[设计意图:再次设计对话环节,小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。]
[设计意图:让学生带着数学去理解生活,结合生活去体会数学的价值。]
师:这节课,你学会了什么,有什么收获?觉得自己学得怎样?心情如何?
这节课的教学应创设更多的情境让学生在其中体验。教科书提供了丰富的情境材料,在此基础上,我以进行了整合。如例1这之前先设计摸球、猜球的颜色等活动来初步感知事情发生的可能性。对例1也进行了改编,与书本的小朋友进行对话,进一步体验事情发生的可能性。
“数学教学是数学活动的教学”本节课的教学按照学生的认知规律和教学内容的特殊性,灵活地组织数学活动,给学生提供较充足的活动空间,探索空间和创造空间,使学生在操作、比较、实践中认识“可能性”如课一开始的“猜一猜”活动,接下来的“摸球”活动,小组内及小组间活动等,全过程无处不是“可能性”的学习与判断,可以说活动贯穿全课,“可能性”也融贯全课。
每一堂课都离不开对话,本节课的教学对话可以说是一个亮点。在教学设计时,我非常注重“对话”在教学过程中的积极作用。主要体现在以下三点。
在与学生对话中,我注重用饱满热情、生动的语言,自然可亲的态度与学生进行交流互动,创设平等、**、和谐的课堂氛围,同时关注对学生表达、概括能力的培养。
教学例1时,我设计了“生本”对话环节:“你能用一定、不一定、可能和书上这位正要摸球的小男孩说些什么吗?”学生对这一活动感到新颖、有趣,乐于对话,敢于对话,在对话中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。
在教学完例2后,我又设计了“生生”对话环节。小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。
在小组间的交流活动过程中,教师过于放手,学生所提问题不能很好的围绕“可能性”来展开。好果教师事先做一定的示范、指导,再放手让学生活动,这样可增强活动的可操作性和有效性。
认识可能性教案篇六摸球游戏(第87页)
通过“摸球游戏”的活动,让学生了解数据表示的方式。又通过学生的讨论与交流,逐步使他们体会到数据表示的简洁性与客观性。
1、交流中复习旧知
师:同学们,我们已经认识了可能性的大小,请看下面一道题。教师呈现题目并配图,然后问:
(1)你认为小青摸出的球可能是什么颜色?
(2)哪一种颜色的球摸出的可能性大,为什么?与同学进行交流。
2、在分析中理解数的表示方法
师:现在盒子里只有2个红球,能否摸到白球呢?
生:不能。因为盒子里没有白球。
师:那么可以用一个数来表示从这个盒子里摸到的白球的可能性呢?
生:用0,因为0代表没有。那么摸出红球的情况呢?
生:一定能摸到红球,因为盒子里都是红球。
师:从盒子里一定能摸到红球,我们说此时摸到红球的可能性是1。谁能说一说生活中哪些事情发生的可能性是0,那些事情发生的可能性为1?(生举例说明)
3、在观察、讨论中理解数的表示方法
师出示一个只有1个红球与一个白球的盒子。
师:从这个盒子中摸到红球的可能性是多少呢?
生:摸到红球的可能性是一半。
师:如果用数来表示摸到红球的可能性,可以怎样表示?
生:12。
师:这个同学说的很好,如果在盒子里在放入一个黄球,那么摸出红球的可能性怎样表示呢?让学生开展分组讨论。(也可以让学生自己想办法,如给每个球标上字母,再观察等)
4、课堂练习:
87页1题、2题。(生小组讨论)
5、归纳小节:用数据表示可能性大小的方式。(可让学生自己,也可师生共同归纳)。
6、布置作业:
87页下面的实践活动题。
本文发布于:2023-06-18 01:30:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/82/979652.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |