LLE算法代码
% LLE ALGORITHM (using K nearest neighbors)
%
% [Y] = lle(X,K,dmax)
%
% X = data as D x N matrix (D = dimensionality, N = #points)
% K = number of neighbors(领域点的个数)
% dmax = max embedding dimensionality(最大嵌入维数)
% Y = embedding as dmax x N matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Y] = lle(X,K,d)
师德师风自我评价[D,N] = size(X);
%D是矩阵的行数,N是矩阵的列数
fprintf(1,'LLE running on %d points in %d dimensions\n',N,D);读书分享怎么写
% STEP1: COMPUTE PAIRWISE DISTANCES & FIND NEIGHBORS
%寻找邻居数据点
fprintf(1,'-->Finding %d nearest neighbours.\n',K);
X2 = sum(X.^2,1);
%矩阵X中的每个元素以2为指数求幂值,并且竖向相加
%if two point X=(x1,x2),Y=(y1,y2)
%than the distance between X and Y is sqtr(x1-y1)+sqtr(x2-y2)
distance = repmat(X2,N,1)+repmat(X2',1,N)-2*X'*X;
下午好的图片
%repmat就是在行方向把X2复制成N份,列方向为1份
[sorted,index] = sort(distance);
%sort是对矩阵排序,sorted是返回对每列排序的结果,index是返回排序后矩阵中每个数在矩阵未排序前每列中的位置
neighborhood = index(2:(1+K),:);
% STEP2: SOLVE FOR RECONSTRUCTION WEIGHTS
%计算重构权
fprintf(1,'-->Solving for reconstruction weights.\n');
if(K>D)
fprintf(1,' [note: K>D; regularization will be ud]\n');
tol=1e-3; % regularlizer in ca constrained fits are ill conditioned
el
tol=0;
end
W = zeros(K,N);
for ii=1:N
z = X(:,neighborhood(:,ii))-repmat(X(:,ii),1,K); % shift ith pt to origin
C = z'*z; % local covariance
红参泡酒
C = C + eye(K,K)*tol*trace(C); % regularlization (K>D) eye()产生k*k的单位矩阵
W(:,ii) = C\ones(K,1); % solve Cw=1
W(:,ii) = W(:,ii)/sum(W(:,ii)); % enforce sum(w)=1
end;
% STEP 3: COMPUTE EMBEDDING FROM EIGENVECTS OF COST MATRIX M=(I-W)'(I-W)
%计算矩阵M=(I-W)'(I-W)的最小d个非零特征值对应的特征向量花生简笔画
fprintf(1,'-->Computing embedding.\n');
% M=eye(N,N); % u a spar matrix with storage for 4KN nonzero elements
M = spar(1:N,1:N,ones(1,N),N,N,4*K*N);
for ii=1:N
w = W(:,ii);
jj = neighborhood(:,ii);
M(ii,jj) = M(ii,jj) - w';
一年级拼音试卷
M(jj,ii) = M(jj,ii) - w;
M(jj,jj) = M(jj,jj) + w*w';
作文我家的小猫end;
% CALCULATION OF EMBEDDING
options.disp = 0; options.isreal = 1; options.issym = 1;
[Y,eigenvals] = eigs(M,d+1,0,options);
%[Y,eigenvals] = jdqr(M,d+1);%change in using JQDR func
Y = Y(:,2:d+1)'*sqrt(N); % bottom evect is [1,1,] with eval 0绿萝喜欢阳光吗
fprintf(1,'Done.\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% other possible regularizers for K>D
% C = C + tol*diag(diag(C)); % regularlization
% C = C + eye(K,K)*tol*trace(C)*K; % regularlization