道路分割模型python

更新时间:2023-06-09 10:32:59 阅读: 评论:0

道路分割模型python
    道路分割是一种常见的计算机视觉任务,其可以将道路与非道路的像素进行二分类。本文将介绍一种基于深度学习的道路分割模型并使用Python实现。
    首先,加载所需的Python库,包括TensorFlow、Keras、NumPy和OpenCV。
    ```python
import tensorflow as tf
from tensorflow import keras
import numpy as np
import cv2
```
    接着,我们定义模型。这里使用的是通用的U-Net结构,其中包括卷积层、池化层、上采
样层和连接层。
    ```python
def unet(input_shape):
    inputs = keras.layers.Input(input_shape)
        down1 = keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
    down1 = keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(down1)
    pool1 = keras.layers.MaxPooling2D((2, 2))(down1)
        down2 = keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)
糖水荷包蛋
    down2 = keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(down2)
    pool2 = keras.layers.MaxPooling2D((2, 2))(down2)
        down3 = keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(pool2)
    down3 = keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(down3)
    pool3 = keras.layers.MaxPooling2D((2, 2))(down3)
        down4 = keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(pool3)
    down4 = keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(down4)
    drop4 = keras.layers.Dropout(0.5)(down4)
    pool4 = keras.layers.MaxPooling2D((2, 2))(drop4)
        down5 = keras.layers.Conv2D(1024, (3, 3), activation='relu', padding='same')(pool4)
    down5 = keras.layers.Conv2D(1024, (3, 3), activation='relu', padding='same')(down5)
    drop5 = keras.layers.Dropout(0.5)(down5)
        up6 = keras.layers.Conv2D(512, (2, 2), activation='relu', padding='same')(keras.layers.UpSampling2D((2, 2))(drop5))
    merge6 = atenate([drop4, up6], axis=3)
    up6 = keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(merge6)
    up6 = keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(up6)
        up7 = keras.layers.Conv2D(256, (2, 2), activation='relu', padding='same')(keras.layers.UpSampling2D((2, 2))(up6))
    merge7 = atenate([down3, up7], axis=3)灵山自然风景区
    up7 = keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(merge7)
    up7 = keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(up7)
        up8 = keras.layers.Conv2D(128, (2, 2), activation='relu', padding='same')(keras.layers.UpSampling2D((2, 2))(up7))
    merge8 = atenate([down2, up8], axis=3)
    up8 = keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(merge8)
    up8 = keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(up8)
        up9 = keras.layers.Conv2D(64, (2, 2), activation='relu', padding='same')(keras.layers.UpSampling2D((2, 2))(up8))
    merge9 = atenate([down1, up9], axis=3)
营业收入增长率计算公式    up9 = keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(merge9)
    up9 = keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(up9)
    output = keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(up9)
新生儿睡觉时间        model = dels.Model(inputs=[inputs], outputs=[output])
        return model
```
    接下来,我们加载训练数据和标签数据,并将其缩放到模型所需的大小。
    ```python
train_data = np.load('train_data.npy')
train_labels = np.load('train_labels.npy')
    train_data = size(train_data, (256, 256))
train_labels = size(train_labels, (256, 256))
train_labels[train_labels > 0.5] = 1
电饭锅焗鸡train_labels[train_labels <= 0.5] = 0李玉刚个人资料简介
```
    然后,我们定义模型的损失函数和优化器,并编译模型。
    ```python
model = unet((256, 256, 3))
pile(optimizer=keras.optimizers.Adam(lr=1e-4), loss='binary_crosntropy')
```
    接着,我们训练模型。
    ```python
model.fit(train_data, train_labels, batch_size=8, epochs=100)
```
    最后,我们对测试数据进行预测并将预测结果保存为图像。
    ```python
test_data = cv2.imread('test_image.jpg')拯救未来
test_data = size(test_data, (256, 256))
    predictions = model.predict(np.array([test_data]))
predictions[predictions > 0.5] = 255
predictions[predictions <= 0.5] = 0
    cv2.imwrite('predictions.jpg', predictions[0])
```
    以上就是基于Python实现的道路分割模型。
新世界影评

本文发布于:2023-06-09 10:32:59,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/910478.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:模型   道路   预测   分割   数据   使用   进行   卷积
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图