道路分割模型python
道路分割是一种常见的计算机视觉任务,其可以将道路与非道路的像素进行二分类。本文将介绍一种基于深度学习的道路分割模型并使用Python实现。
首先,加载所需的Python库,包括TensorFlow、Keras、NumPy和OpenCV。
```python
import tensorflow as tf
from tensorflow import keras
import numpy as np
import cv2
```
接着,我们定义模型。这里使用的是通用的U-Net结构,其中包括卷积层、池化层、上采
样层和连接层。
```python
def unet(input_shape):
inputs = keras.layers.Input(input_shape)
down1 = keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
down1 = keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(down1)
pool1 = keras.layers.MaxPooling2D((2, 2))(down1)
down2 = keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)
糖水荷包蛋
down2 = keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(down2)
pool2 = keras.layers.MaxPooling2D((2, 2))(down2)
down3 = keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(pool2)
down3 = keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(down3)
pool3 = keras.layers.MaxPooling2D((2, 2))(down3)
down4 = keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(pool3)
down4 = keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(down4)
drop4 = keras.layers.Dropout(0.5)(down4)
pool4 = keras.layers.MaxPooling2D((2, 2))(drop4)
down5 = keras.layers.Conv2D(1024, (3, 3), activation='relu', padding='same')(pool4)
down5 = keras.layers.Conv2D(1024, (3, 3), activation='relu', padding='same')(down5)
drop5 = keras.layers.Dropout(0.5)(down5)
up6 = keras.layers.Conv2D(512, (2, 2), activation='relu', padding='same')(keras.layers.UpSampling2D((2, 2))(drop5))
merge6 = atenate([drop4, up6], axis=3)
up6 = keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(merge6)
up6 = keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(up6)
up7 = keras.layers.Conv2D(256, (2, 2), activation='relu', padding='same')(keras.layers.UpSampling2D((2, 2))(up6))
merge7 = atenate([down3, up7], axis=3)灵山自然风景区
up7 = keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(merge7)
up7 = keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(up7)
up8 = keras.layers.Conv2D(128, (2, 2), activation='relu', padding='same')(keras.layers.UpSampling2D((2, 2))(up7))
merge8 = atenate([down2, up8], axis=3)
up8 = keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(merge8)
up8 = keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(up8)
up9 = keras.layers.Conv2D(64, (2, 2), activation='relu', padding='same')(keras.layers.UpSampling2D((2, 2))(up8))
merge9 = atenate([down1, up9], axis=3)
营业收入增长率计算公式 up9 = keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(merge9)
up9 = keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(up9)
output = keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(up9)
新生儿睡觉时间 model = dels.Model(inputs=[inputs], outputs=[output])
return model
```
接下来,我们加载训练数据和标签数据,并将其缩放到模型所需的大小。
```python
train_data = np.load('train_data.npy')
train_labels = np.load('train_labels.npy')
train_data = size(train_data, (256, 256))
train_labels = size(train_labels, (256, 256))
train_labels[train_labels > 0.5] = 1
电饭锅焗鸡train_labels[train_labels <= 0.5] = 0李玉刚个人资料简介
```
然后,我们定义模型的损失函数和优化器,并编译模型。
```python
model = unet((256, 256, 3))
pile(optimizer=keras.optimizers.Adam(lr=1e-4), loss='binary_crosntropy')
```
接着,我们训练模型。
```python
model.fit(train_data, train_labels, batch_size=8, epochs=100)
```
最后,我们对测试数据进行预测并将预测结果保存为图像。
```python
test_data = cv2.imread('test_image.jpg')拯救未来
test_data = size(test_data, (256, 256))
predictions = model.predict(np.array([test_data]))
predictions[predictions > 0.5] = 255
predictions[predictions <= 0.5] = 0
cv2.imwrite('predictions.jpg', predictions[0])
```
以上就是基于Python实现的道路分割模型。
新世界影评