matlab练习程序(NDT)

更新时间:2023-06-08 22:59:55 阅读: 评论:0

matlab练习程序(NDT)
NDT全称Normal Distributions Transform(正态分布变换),⽤来计算不同点云之间的旋转平移关系,和ICP功能类似,并且该算法能够写出多线程版本,因此速度可以⽐较快。
算法步骤如下,以⼆维点云为例:
1. ⽐如我们有两组点云A和B,A是固定点云,我们要把B转换到和A对齐,就要计算出B到A的旋转矩阵R和平移矩阵T,对应的就是三个参数(x,y,theta)。
2. ⾸先对A进⾏栅格化,计算每个栅格中的点云的均值和⽅差,记为和u和∑。
3. 设定损失函数,其中x为待匹配点云(就是上⾯的B点云),n为x点云总个数,损失函数记为:
4. 要计算损失函数S达到最⼩时的x,y和theta,⽤⽜顿迭代求解。
5. 计算S对x,y,theta的⼀阶偏导,其中p就代表(x,y,theta):
6. 计算S对x,y,theta的⼆阶偏导,即⿊塞矩阵:
7. 设定迭代次数或者迭代阈值,计算delta=-inv(H)*g,得到迭代步长。
8. 更新参数p = p+delta,最后达到设定阈值或迭代次数即可。
matlab代码如下:
clear all;clo all;clc;
%⽣成原始点集
X=[];Y=[];
for i=-180:2:180
for j=-90:2:90
x = i * pi / 180.0;
y = j * pi / 180.0;
X =[X,cos(y)*cos(x)];
Y =[Y,sin(y)*cos(x)];
end
end
P=[X(1:3000)' Y(1:3000)'];
%⽣成变换后点集
theta=0.5;
R=[cos(theta) -sin(theta);sin(theta) cos(theta)];
X=(R*P')' + [2.4,3.5];
plot(P(:,1),P(:,2),'b.');
hold on;
plot(X(:,1),X(:,2),'r.');
三七粉的功效与作用及禁忌meanP = mean(P);
meanX = mean(X);
P = P - meanP;          %统⼀起始点,否则两组点云间可能没有交集,算法会失效退货流程及操作
X = X - meanX;
minx = min(X(:,1));
miny = min(X(:,2));
maxx = max(X(:,1));
maxy = max(X(:,2));
cellsize = 0.3;        %⽹格⼤⼩
M = floor((maxx - minx)/cellsize+1);
N = floor((maxy - miny)/cellsize+1);
grid = cell(M,N);
meanGrid = zeros(2,M,N);
convGrid = zeros(2,2,M,N);
for i = 1:length(X)            %划分⽹格并填⼊数据
m = floor((X(i,1) - minx)/cellsize + 1);
n = floor((X(i,2) - miny)/cellsize + 1);
grid{m,n} = [grid{m,n};X(i,:)];
end
%计算每个⽹格中的均值和⽅差
for i=1:M
for j=1:N
if(size(grid{i,j},1)>=2)
meanGrid(:,i,j) = mean(grid{i,j});
convGrid(:,:,i,j) = cov(grid{i,j});
end
end
end
pre =zeros(3,1);
for i=1:40          %迭代40次
g = zeros(3,1);
H = zeros(3,3);
tx = pre(1);
ty = pre(2);
theta = pre(3);
for j=1:length(P)
x = P(j,1);
y = P(j,2);
p_trans = [x*cos(theta)-y*sin(theta)+tx;x*sin(theta)+y*cos(theta)+ty];buy的反义词
m = floor((p_trans(1) - minx)/cellsize + 1);
n = floor((p_trans(2) - miny)/cellsize + 1);
if m>=1 && n>=1 && m<=M && n<=N        %只计算投影到⽹格中的点云数据
if (size(grid{m,n},1)>=2)
q = meanGrid(:,m,n);
sigma = convGrid(:,:,m,n);
if(cond(sigma)>50)              %根据矩阵条件数判断是否是病态矩阵
continue;
end
invsigma = inv(sigma);
xk = p_trans - q;
dx = [1;0];
dy = [0;1];
dt = [-x*sin(theta)-y*cos(theta);x*cos(theta)-y*sin(theta)];
ddt = [-x*cos(theta)+y*sin(theta);-x*sin(theta)-y*cos(theta)];
g(1) = g(1) + (xk'*invsigma* dx *exp(-0.5*xk'*invsigma*xk));    %计算损失函数对x的偏导
g(2) = g(2) + (xk'*invsigma* dy *exp(-0.5*xk'*invsigma*xk));    %计算损失函数对y的偏导
g(3) = g(3) + (xk'*invsigma* dt *exp(-0.5*xk'*invsigma*xk));    %计算损失函数对theta的偏导
%计算⿊塞矩阵,分别计算损失函数对x,y,theta的⼆阶偏导
H(1,1) = H(1,1) + exp(-0.5*xk'*invsigma*xk)*(-(xk'*invsigma*dx)*(xk'*invsigma*dx)+(dx'*invsigma*dx));
H(1,2) = H(1,2) + exp(-0.5*xk'*invsigma*xk)*(-(xk'*invsigma*dx)*(xk'*invsigma*dy)+(dx'*invsigma*dy));
H(1,3) = H(1,3) + exp(-0.5*xk'*invsigma*xk)*(-(xk'*invsigma*dx)*(xk'*invsigma*dt)+(dx'*invsigma*dt));
H(2,1) = H(2,1) + exp(-0.5*xk'*invsigma*xk)*(-(xk'*invsigma*dy)*(xk'*invsigma*dx)+(dy'*invsigma*dx));
H(2,2) = H(2,2) + exp(-0.5*xk'*invsigma*xk)*(-(xk'*invsigma*dy)*(xk'*invsigma*dy)+(dy'*invsigma*dy));
H(2,3) = H(2,3) + exp(-0.5*xk'*invsigma*xk)*(-(xk'*invsigma*dy)*(xk'*invsigma*dt)+(dy'*invsigma*dt));
H(3,1) = H(3,1) + exp(-0.5*xk'*invsigma*xk)*(-(xk'*invsigma*dt)*(xk'*invsigma*dx)+(dt'*invsigma*dx));
H(3,2) = H(3,2) + exp(-0.5*xk'*invsigma*xk)*(-(xk'*invsigma*dt)*(xk'*invsigma*dy)+(dt'*invsigma*dy));
H(3,3) = H(3,3) + exp(-0.5*xk'*invsigma*xk)*(-(xk'*invsigma*dt)*(xk'*invsigma*dt)+(dt'*invsigma*dt) + xk'*invsigma*ddt);
end
end
end
%⽜顿迭代求解
delta = -H\g;
pre = pre + delta;
物业服务内容
end
pre
theta=pre(3);
R=[cos(theta) -sin(theta);sin(theta) cos(theta)];      %画出变换后的点云
XX=(R*P')' + [pre(1),pre(2)] + meanX;
plot(XX(:,1),XX(:,2),'g.');
axis equal;
美国的英文
legend('原始点云','变换后点云','配准点云')
下⾯给⼀个⽤matlab⾃带函数计算的例⼦:
clear all;clo all;clc;琵琶独奏
%⽣成原始点集
X=[];Y=[];
for i=-180:2:180
for j=-90:2:90
x = i * pi / 180.0;
12月26日是什么星座
y = j * pi / 180.0;
X =[X,cos(y)*cos(x)];
Y =[Y,sin(y)*cos(x)];
end
end
P=[X(1:3000)' Y(1:3000)'];
%⽣成变换后点集
宝宝长牙的症状
theta=-0.5;
R=[cos(theta) -sin(theta);sin(theta) cos(theta)]; X=P*R + [2.4,3.5];
plot(P(:,1),P(:,2),'b.');
hold on;
plot(X(:,1),X(:,2),'r.');
P = [P zeros(length(P),1)];
X = [X zeros(length(X),1)];
moving = pointCloud(P);
fixed = pointCloud(X);
gridStep = 0.3;
tform = pcregisterndt(moving,fixed,gridStep); R = tform.Rotation;
T = tform.Translation;
XX=P*R + T;
plot(XX(:,1),XX(:,2),'g.');
axis equal
legend('原始点云','变换后点云','配准点云')
结果如下:

本文发布于:2023-06-08 22:59:55,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/906287.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:计算   函数   迭代   矩阵   算法
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图