爆炒龙虾尾的家常做法半角模型专题训练
一、解答题
1.(探索发现)如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图①,将绕点A顺时针旋转,点D与点B重合,得到,连接AM、AN、MN.
(1)试判断DM,BN,MN之间的数量关系,并写出证明过程.
(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,,连接MN,请写出MN、DM、BN之间的数量关系,并写出证明过程.
(3)如图③,在四边形ABCD中,AB=AD,,,点N,M分别在边BC,CD上,,请直接写出线段BN,DM,MN之间的数量关系.
2.如图,等腰直角三角形ABC中,∠BAC= 90°,AB=AC,点M,N在边BC 上,且∠MAN=45°.若BM= 1,CN=3,求MN的长.
3.问题背景:如图1,在四边形中,,,,,,绕B点旋转,它的两边分别交、于一级黄色录相E、F.探究图中线段之间的数量关系.小李同学探究此问题的方法是:延长到G,使,连接,先证明,再证明,可得出结论,他的结论就是______________;
探究延伸:如图2,在四边形中,,,,绕B点旋转,它的两边分别交、于一股作气E、F.上述结论是否仍然成立?并说明理由.
实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为70°,试求此时两舰艇之间的距离.
红烧肘子怎么做4.如图,,,点、分别在边、上,,过点作,且点在的延长线上.
(1)与全等吗?为什么?
(2)若,,求的长.
5.如图,在四边形中,,,分别是,上的点,连接,,.
雨雪纷飞(1)如图①,,,.求证:;
(2)如图②,,当周长最小时,求的度数;
(3)如图③,若四边形为正方形,点、分别在边、上,且,若,,请求出线段的长度.
6.如图,志力是边长为2的等边三角形,是顶角为120°的等腰三角形,以点为顶点作,点、分别在资治通鉴汉纪、上.
(1)如图①,当时,则的周长为______;
(2)如图②,求证:.
7.问题背景
如图①,在四边形中,,,,点,分别是,上的点,且,连接,探究线段,,之间的数量关系.
探究发现
(1)小明同学的方法是将绕点逆时针旋转至的位置,使得与重合,然后再证明,从而得出结论:______;
拓展延伸
(2)如图②,在四边形中,,,点,分别是边,上的点,且,连接.(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)如图③,在正方形中,点,分别是边,上的点,且,连接,已知,,求正方形的边长.
8.如图,是边长为3的等边三角形,是等腰三角形,且,以为顶点作一个角,使其两边分别交于点,交于点,连接,求的周长.
9.如图,已知:正方形,点,分别是,上的点,连接,,,且,求证:.
10.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE天下第一行书≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是 (直接写结论,不需证明);
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;
(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.
11.如图,正方形ABCD中,E、F分别在边BC、CD上,且∠EAF=45°,连接EF,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路.例如
图中△ADF与△ABG可以看作绕点A旋转90°的关系.这可以证明结论“EF=BE+DF”,请补充辅助线的作法,并写出证明过程.