《可能性》教学设计15篇

更新时间:2023-05-22 02:37:19 阅读: 评论:0

《可能性》教学设计15篇

在教学工作者实际的教学活动中,时常需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么教学设计应该怎么写才合适呢?以下是为大家收集的《可能性》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《可能性》教学设计1

教学内容:

教材P107—109

教学目的:

4、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

5、通过实际操作活动,培养学生的动手实践能力。

6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

教学重、难点:

知道事件发生的可能性是有大小的。

教学过程:

一、引入

出示小盒子,展出其中的小球色彩、数量,

如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?

二、探究新知

1、教学例5

(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去北豆根片,重复20次。

记录次数

活动汇报、

(2)袋子里的红球多还是黄球多?为什么这样猜?

小组内说一说

总数量有10个球,你估计有几个红,几个黄?

(3)开袋子验证

让学生初步感受到实验结果与理论概率之间的关系。

2、练习

P107“做一做”

3、

三、巩固练习

P1096

[1]学生说说掷出后可能出现的结果有哪些

[2]猜测实验后结果会有什么特点

[3]实践、记录、统计

[4]说说从统计数据中发现什么?

[5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。

P1097

学生讨论完成

教学反思:

《可能性》教学设计2

[教学目标]

1、运用分数表示可能性的方式,能自主的设计一些活动方案。

2、对实际生活中的事件与现象,能运用可能性的知识进行合理的设计。

[教学过程]

1、复习分数表示可能性大小的方式。

2、教师向学生提出设计方案的具体要求。(投影出示题目)

3、小组合作设计方案

各小组在设计时,教师不要作过多的提示,要充分发挥学生的想象力,以便学生设计出各种与众不同的设计方案。

4、汇报交流

在交流时,首先请各小组汇报各自设计的方案并说一说设计时的想法。对于不符合设计要求的方案,教师也不要急于否定,而应让学生说一说他们的想法,并结合他们的想法加以引导。

5、归纳设计特点

学生在交流汇报后,教师可以把每一种每一种方案的设计均用分数的形式表示出来,并引导学生观察各种不同方案中的共同点,从中发现设计的基本特点。

6、课堂练习

88页做一做,生***做。

7、布置作业

88页的实践活动。

学生可***设计,也可以是以小组为单位设计。

第4课时

[教学内容]数学与生活(第91页)

[教学目的]本节课设计的活动目的是将学生所学的知识进行综合,并能解决一些实际问题。

[教学过程]

1、复习

在开展活动前,先组织学生复习分数的认识与加减法的知识内容。

2、投影出示活动题目

呈现数据表后,可以请学生根据所提供的信息,自己提出数学问题,并能自己解答。

3、组织活动

师按顺序当场组织学生开展调查活动,了解本班学生迎新年的设想(也可让学生以小组的形式进行)。

4、组织“长跑接力”活动的讨论

这一活动应组织学生开展多次讨论。第一次讨论5个接力点的位置,每个位置的确定都应该是有根据的。第二次讨论位置设计的合理性问题,要让学生说一说不合理的理由。第三次讨论重新设计的问题,在讨论前也可以让学生***思考,然后再组织讨论新的设计。

第5课时

[教学内容]有奖游戏(第92页)

[教学目的]

1、使学生能用所学知识解决一些实际问题。

2、密铺活动有助于学生进一步体验所学***形的特征,感受数学在实际生活中的应用,发展空间观念。

[教学过程]

1、投影出示“有奖游戏”***

2、让生表示游戏获奖的可能性

先让生仔细观察投影***,再把每一种游戏获奖的可能性表示出来。

3、学生小组讨论

“有奖游戏”是一个开放性的活动,学生不一定以中奖的可能性大小来确定参加的游戏,它还包括各人对奖品的喜爱程度。

4、让学生说一说自己愿意参加的项目,并说出理由。

5、布置作业

调查生活中的有奖游戏,并自己设计一个“有吸引力”的游戏。

《可能性》教学设计3

教学目标:

1、使学生联系分数的意义,初步掌握用分数表示具体数量中简单事件发生的可能性的方法。会用分数表示可能性的大小,进一步加深对可能性大小的认识。

2、在理解用分数表示可能性大小的意义中体会统计概率的随机现象,感受到试验的次数越多频率越接近概率。

3、使学生在学习用分数表示大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与学习数学的兴趣。

教学重点:

理解并掌握用分数表示可能性大小的方法。

教学难点:

理解用分数表示可能性大小的意义。(这个地方我的意思是理解用分数表示可能性的大小和用分数表示他的事物的大小是不一样的。)

教学过程:

一、在情境中,体会用分数表示可能性大小的必要性。

师直接出示书中的情景:依次出示书中的五个盒子(1)两个红球(2)两个白球(3)一个红一个白(4)三个白5个红(5)5个红3个白(这个地方把教材的数字稍作了改动,主要是为了后面的实验更有利于学生发现,试验次数越多频率越接近概率。)

问题:分别从这些盒子中任意摸出一个球,说一说从不同的盒子里摸出白球的可能性。

预设:学生可能会

1、利用学过的不可能、一定、可能性相等、可能性小、可能性比较大来回答。

2、也可能直接用分数来回答。

师根据不同的情况作不同的导入

1、可能性大有多大呢?具体大到什么程度呢?就向说你已经很大了,到底有多大呢?你需要告诉人家你今年11了。一样可能性的大小也可以用一个数来表示,这就是我们这节课重点要来研究的问题。板书:用数来表示可能性的大小。

2、这位同学不但知道了摸到白球的可能性有大有小,还能用一个数来具体表示可能性的到底有多大,那么他说的有没有道理呢?这就是这节课我们要来重点研究的问题。板书:用数来表示可能性的大小。

设计意***:给学生***思考的空间,学生根据学过的可能性知识或者结合自己的生活经验来解答,在解答的过程中了解学生学习新知的起点:或者直接用不可能、一定、可能等语言来表达;或者直接用数据分数来表达。教师及时地调整教学的策略。另这个地方同时使学生体会到进一步学习用分数表示可能性大小的必要性。用语言来表达可能性有局限性,需要进一步学习把可能性的语言转化为数据来表示。

二、会用分数表示可能性的大小。

1、理解不可能事件用数据0来表示

师:不可能摸到白球我们可以用几来表示呢?你同意吗?为什么?

2、一定能摸到白球用数据1来表示。

设计意***:先处理不可能和一定两个确定的事件用数据如何表示的目的是

1、通过这种描述语言转化为数据表示的过程,为后续用分数表示可能性作了铺垫。

2、初步感受到,不确定可能性事件用分数表示的范围在0—1之间

3、用二分之一表示等可能性

师:红、白球各一个摸到白球的可能性占多少呢?为什么呢?

设计意***:从最简单的事件入手理解用分数表示可能性大小的方法

如果我再往里放一个红球,这个时候摸到白球的可能性又是多少呢?

(及时巩固练习用分数表示可能性的方法)

师:为什么?那摸到红球的可能性是多少呢?你是怎么想的?

预设:1、观察知道红球占三分之二2、推理知道白球占三分之一红球就是三分之二

设计意***:理解三分之一加三分之二等与1

4、你能自己用一个数来表示后两个盒子摸到白球的可能性的大小吗?

5、那可能性最大是多少?最小呢?也就是说可能性总是在0—1之间发生变化。

设计意***:我想用分数表示可能性的大小,很多孩子都能完成。但为什么要这么表示可能会说不清楚。在教师的引领下对自己的解决问题的思路就更加清晰了,另外感受到不确定可能性事件用分数表示的范围在0—1之间

三、体会概率现象中的随机性

摸到白球的可能性是8分之3,是不是摸8次球就一定能摸到3次白球呢?肯定有说是有说不是的。这时候在孩子们需要试验的需求上进行试验。讲好试验的要求。

1、同桌合作一个摸一个做好记录。我发给他们记录的表。

2、每人摸四次,每次摸一个,在放回盒中摇匀

全班交流

师板书学生的数据:看到这些数据你有什么想法?

是我们的推理错了吗?引导学生把班级的实验数据相加感受次数越多越近概率。

设计意***:用分数表示可能性大小的内容属于统计与概率的领域。主要的特性应该是随机性,如何培养孩子的随机意识?我通过了让学生亲自试验来感受它的随机性,发现试验的结果和我们推理的不一样。进一步反思追问为什么?逐步理解试验次数越多,频率就越接近概率。

师:通过实验和讨论现在你能解释一下8分之3表示什么了吗?

设计意***:在试验与反思过后再来理解用分数表示可能性大小的意义。明确和用分数表示可能性的大小和用分数表示其他事物的大小是不一样的,它是不确定的。

师:既然不确定那我们用分数表示可能性的大小有什么价值呢?过渡到下一个环节

四、联系生活实际,体现用分数表示可能性的价值

师:在我们的生活中有很多时候都能用到用分数表示可能性的大小。比如:两个厂生产同一种产品,价格等其他条件都一样,甲厂的产品有百分之十返修,乙厂生产的产品有百分之一返修,你选择买哪个厂的?

设计意***:虽然用分数表示的是不确定现象,但我们可以根据分率的大小的比较来确定我们的选择

师:如果天气预报降水的概率是百分之十,你出门会带雨伞吗?天气预报降水的概率是百分之九十,你出门会带雨伞吗?降水率是百分之九十九一定会洚水吗?

师:生活中不确定得现象太多了,所红萝卜丸子的做法以我们应该学会用变化的眼光看这个世界,学会根据可能性的大小去进行选择和判断。

设计意***:体会学习用分数表示可能性的价值

五、总结

《可能性》教学设计4

教材简析:

教材让学生通过实践活动认识某些事件可能发现的机会,并学习有关的统计内容。这是在学生进行过简单的统计和己经初步认识某些事件发生的不确定性基础上安排的。教材让学生摸球的实验,引导学生先估计,再实验,从实验中发现事件发生的可能性是差不多的,在此过程中,学会用画“正”字的方法收集、记录数据。

这部分内容的重点是让学生实验活动中探索出事件发生的可能性的大小并做出适当的解释。

教学目标:

l、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集、记录数据。这部分内容的重点是让学生在实验活动中探索出事件发生的可能性的大小并做出适当的解释。

教学目标:

l、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集、整理数据。

2、使学生经历实验的具体过程中,能对实验可能发生的结果或某些事件发生的可能性的大小做出简单判断和适当的解释。

3、培养学生积极参与数学活动的意识,初步感受实验是获得科学结论的一种有效方法,进一步发展与他人合作交流的意识和能力。

实验活动准备:每组各3个大小相同黄、白球,一个不透明塑料袋,一条蒙眼睛的带子,一个正方体,由正方体上分别两面写上(1、2、3)红、白颜色的小棒各4根。

教学过程:

一、激情引人

师:今天,老师要带每小组到数学乐园去玩个痛快,高兴吗?还要评出合作好的小组给予奖励。

二、展开活动,探究问题

1、活动一:瞎子摸球。

学生从装有3个白球,3个黄球的袋子里每次摸1个球,摸出以后把球再放回口袋,一共摸40次。

(1)向学生说明活动要求。

(2)学生估计白球和黄球可能各摸到多少次。

(3)学生按要求在小组内分工合作。

(4)小组内交流:统计的结果和你的估计差不多吗?你发现了什么?

(5)汇报交流:根据你们组统计的结果,你们发现了什么?

2、活动二:掷骰子。

学生把两个面上写“l”,两个面上写“2”,两个面上写“3”的小正方体抛30次。

(1)说明活动要求。

(2)学生完成表1后由小组长收集,另外三个小组的数据填入表2。

(3)小组内交流:你发现了什么?

(4)汇报交流。

3、活动三:放小棒

在袋子里放4根小棒,怎样放才可能分别达到下面的要求?

a、任意摸一根,不可能是红小棒。

b、任意摸一根,可能是红小棒。

c、每次任意摸一根,摸50次,摸到红小棒和白小棒的次数差不多。

(1)学生依次按要求先在小组内讨论,再验证小组内的说法。(在口袋里放小棒)

(2)汇报交流。

三、活动总结

l、由学生评出本次活动中完成得较好的小组给予奖励

2、说说你在这次快乐的活动中知道了什么?

《可能性》教学设计5

一、教材分析

《新课程标准》在小学第一学段安排的“概率”学习内容主要有:初步体会有些事件的发生是确定的,有些则是不确定的,对所有可能发生的结果进行简单的实验。本节课是北师大版三年级上册第八单元“可能性”的第一课时。学生在学习这部分内容之前,在二年级上册已经对某些事件发生的不确定性有所认识,本节课进一步学习事件发生的可能性有大有小,并能对这些可能性的大小用语言进行描述,是为下一学段学习概率知识打下基础。

事件发生可能性的大小是由事件的各种因素决定的。同样摸球,如果某种颜色的球数量多一些,那么摸出这一颜色的球的可能性就大一些。对于这些道理,既不能由教师直接告诉学生,也不能在活动中刻意去追求,一定要引导学生在自己的活动过程中悟出其中的道理。因此,本目标实施的重点是通过一系列活动,逐步让学生悟出事件发生的可能性的大小。

二、教学目标

1、通过“猜测—实践—验证”的摸球游戏,让学生经历事件发生的可能性大小的探索过程,初步感受事件发生的可能性是不确定的,体会事件发生的可能性是有大有小的。

2、在活动交流中培养合作学习的意识和能力,获得良好的情感体验。

三、教学重难点

感受事件发生的可能性有大有小。

四、教法学法

三年级的学生,正处在抽象逻辑思维初步形成的阶段,他们的抽象思维需要在感性材料的支持下才能进行,直观演示或游戏切入较容易被他们所接受。基于以上理解,我在选择教学方法时,以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中。

五、教学设计

本堂课,我设计了四个教学环节,“猜想——验证——推理——运用”。首先,我将学生分成若干学习小组,亲自参与“猜想——验证——推理”这一完整的科学探究过程,感知可能性大小与哪些因素有关,加深对知识的理解,再通过运用这一环节将数学知识与实际生活相联系,真正做到学以致用。

1、创设情境,激趣猜测

一开课,通过“师猜生摸”的摸球游戏,很容易就达到师生互动,从而调动学生的学习兴趣。在玩中教会学生用“一定”“不可能”“可能”来表述事件发生的确定性和不确定性。这一活动唤起了学生对旧知的记忆,为新知的学习做好铺垫。

2、组织活动,验证猜测

学生进行了猜测,但猜测的对不对呢、实验是的老师,这个谜底还是让学生自己通过实验来揭晓。学生通过自己的实验,在亲历、体验的过程中感悟、体会到事情发生的可能性的大小。合作学习的形式既能发挥集体的智慧,又能展示个人多方面的才能。此环节通过学生的合作学习,使他们体会与他人交流的快乐,同时促进学生个人的完善与发展。学生才是真正的主人,这种共同研讨的学习模式,培养了学生的合作意识和科学研究态度。

3、实验分析,大胆推理

善于观察、分析是学生综合能力培养的一项重要目标,学生对自己的实验最有发言权,所以我首先请学生以小组为单位,轮流到实物展示台前向全班同学说说,在实验中自己发现了什么,得出了什么结论。而我则从旁协助他们引导他们,帮助学生理解:事件发生可能性的大小与哪些因素有关、

4、综合运用,服务生活

新课标指出数学学习要联系生活实际,学有用的数学。可能性问题在儿童的生活中接触还是比较多的。从转盘游戏到摇奖设计,让学生初步具有信息收集、整理、分析的能力,更让学生感受到数学知识就在自己的身边,使学生联系生活实际,体验可能性。这样的设计充分让学生自己做主,学生有了更宽广的思维空间,个性化思维将得到充分展现。

《可能性》教学设计6

教学内容

人教版义务教育教科书小学数学五年级上册第四单元《可能性》。

教学目标

1.使学生初步体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定”“可能”“不可能”等词语来描述随机事件发生的可能性。

2.在活动过程中,使学生能够列出简单试验中所有可能发生的结果。

3.让学生经历“猜想—实践—验证”的过程,培养学生的猜想意识、表达能力以及初步的判断和推理能力,让学生在同伴的合作和交流中获得良好的情感体验。

4.使学生感受到生活与数学的联系,培养学生学习数学的兴趣。

教学重难点

教学重点

通过活动让学生充分体验随机事件发生的确定性和不确定性。

教学准备

课件、盒子、节目签、乒乓球等。

教学过程

一、激趣导入,探究新知

通过趣味游戏,初步感知“可能性”。教师:老师知道,xxx班的孩子们最善于参与各项有意义的活动,这节课我们就从一场精彩的联欢会开始吧!聪明的同学们在联欢会中设置了一个激动人心的环节,那就是通过抽签决定要表演的节目类型。同学们想体验吗?

学生:想!

教师:先来认识我们的节目签吧!(课件出示节目签)

学生:有唱歌、跳舞、朗诵。

教师(课件显示节目签翻转至背面,并打乱位置):请一位同学来抽签。

教师:请第一位同学来抽签,他会抽到什么节目呢?请大家先猜一猜。学生会对抽签结果进行猜测:可能是唱歌,可能是跳舞,也可能是朗诵,3种情况都有可能。教师在黑板上板书:可能。

教师(课件翻出中间一张:跳舞或其他签):第一位同学抽到的是什么节目?

学生:跳舞。

教师:为了节目不重复,被抽去的跳舞签就不放回去,还剩下两张签。接下来该第二位抽签了,她可能会抽到什么呢?

学生:唱歌和朗诵都有可能。

教师:确定吗?

学生:不确定。

教师:还可能抽到“跳舞”吗?

学生:不可能(板书:不可能)。

教师:理由是?

学生:因为两张签里没有跳舞。

教师:我请第二位同学抽取一张。(抽后汇报结果)(课件翻开第一张:朗诵)。

教师:请第三位同学抽签。现在只剩最后一张了,第三位同学会抽到什么呢?

学生:唱歌(一定是唱歌)。

教师:能确定吗?为什么?(教师板书:一定)

学生:确定,因为只有一张签,一定是唱歌。

教师(小结):同学们,我们用“可能”“不可能”“一定”来描述抽签的情况。生活中还有很多这样的现象,这也是我们这节课要研究的数学问题——可能性。(板书:可能性)(设计意***:“可能性”对于五年级的学生来说并不是完全空白的,学生在生活和学习中已经具有一些简单随机现象的知识基础和生活经验。这里用学生熟悉的“联欢会上抽签表演节目”的生活实例导入新课教学,让学生在猜测中感受,在活动中明晰,以形成对“可能性”的初步认识,同时也有效地激发了学生的学习欲望,吸引学生参与到数学学习中来。)

二、实践验证,领悟新知

1.摸球实验

教师:老师还为同学们带来了一个神奇的游戏盒子(出示盒子),从盒子里我们也能找到可能性的知识。

教师:(摇动盒子,盒子里是什么?学生回答!再从盒子里拿出一个红色乒乓球)这是老师为同学们特制的——红色乒乓球。如果老师将这个红色的乒乓球放进盒子,你想摸出红色的乒乓球吗?

学生:想!

教师:如果盒子里一共有六个大小形状完全相同的红色乒乓球,你从盒子里任意摸取一个,会有怎样的结果?

学生:一定会摸到红色乒乓球。

教师:理由呢?兄妹

学生:因为盒子里全是红色乒乓球,只能摸出红色乒乓球。

教师:如果游戏盒子变了(出示4红2黄),想从盒子里摸出一个红色的乒乓球,摸取一次会有怎样的结果?

学生:可能摸到,也可能摸不到。

教师:想试试吗?为什么?

学生:想,因为结果不确定。组织学生体验摸球过程,每摸出一个记录一个,并将球放回去,摇匀后再进行下一次摸球试验。(引导学生摸球时不偷看,说明将球放回去是为了确保条件不变,摇匀是为了公平)

教师:游戏盒子再变一变,变成了——3红3黄(课件出示),从盒子里任意摸取一个乒乓球,能摸到红色乒乓球吗?一定会摸到吗?

学生:可能摸到,但不一定。组织学生再次体验摸球过程,并记录,如果连续出现几次红色球或者黄色球,提问:下一个一定是红色球或黄色球吗?让学生感受随机事件的不确定性,每次发生的结果与上一次结果没有直接关系。

教师:变!——游戏盒子里面的乒乓球变成了这样,1红5黄(课件出示),从盒子里任意摸出一个球,还会摸出红色乒乓球吗?理由是?

学生:可能摸到!因为盒子里有红色乒乓球。组织学生再次体验摸球过程,并记录,让学生再次感受随机事件的不确定性,体会每次发生的结果与上一次结果没有直接关系。

教师:如果盒子里有10个黄球1个红球呢?还有可能摸到红球吗?学生:有可能。

教师:如果盒子里有100个黄球1个红球呢?还有可能摸到红球吗?如果盒子里有1000个黄球1个红球呢?10000个黄球1个红球呢?还有可能吗?

学生:有可能。

教师:如果去掉这个红球呢?还能摸到红球吗?

学生:不可能。(教师要充分给予学生猜测、试验、交流的机会。在交流时,教师还要引导学生在感受的基础上用可能、不可能、一定等词语描述摸球的各种情况。)(设计意***:本环节旨在通过简单实验的对比,让学生亲历猜想、实践、验证、交流,丰富学生对确定事件和不确定事件的体验,初步感受随机事件发生的统计规律性和可能性的大小。)

2.猜球实验。

教师:盒子又变了,变成了……是老师直接告诉你们结果呢?还是我提供一个线索你们自己想办法猜出盒子里的球是什么颜色的?

学生:提供线索,自己猜。

教师:(出示课件)线索是,可能与A盒子、B盒子或者C盒子中的某一个完全相同,到底与哪个盒子相同呢?怎么办?

学生:从盒子中摸出一个球。

教师:试试看。(学生从盒子里摸出一个球,并出示所摸出的球)。知道是哪个盒子吗?学生:不能确定,可能是A盒子、或者C(B)盒子,但可以排除B(c)。

教师:不确定,怎么办?

学生:再摸一次。学生再次从盒子里摸球,并出示结果,判断盒子,如果还无法判断,就继续摸球,直到能够判断是A盒子为止。

3.放球实验。

教师:同学们还想继续玩吗?

学生:想。

教师:可是老师的游戏盒子变不了了,想请同学们帮忙i5和i7的区别制作游戏盒子,愿意吗?

学生:愿意!

教师:但制作游戏盒子需要遵守规则,请看!(出示课件)按规则作出第一个游戏盒子。(为了方便用此***代替盒子,用磁扣代替乒乓球)怎么放?请同学汇报放球方法。

学生:放4个红球。

教师:那第二个盒子该怎样完成呢?(出示课件)请同学们三人一个小组,用圆形纸片代替乒乓球,在桌子上摆一摆,小组内交流自己的想法,做好小组汇报的准备。请学生汇报。因为结果多样,老师在黑板上操作呈现,并订正。

教师:用一句话概括所有的做法,可以怎样说?

学生:只要盒子里不装黄色球就可以了。

教师:第三个盒子又来啦!又怎样做呢?小组先摆一摆,先在组内交流讨论,再小组汇报。学生汇报,并评价。

教师:用一句话概括可以怎样说?

学生:至少要放一个蓝色球但不能全是蓝色球。(放1-3个蓝色球,再放其它颜色的球,直到放够四个球。)(设计意***:本环节旨在通过动手操作,让学生通过学习的可能性知识去判断如何放球,感知结果与条件的关系。)

三、灵活运用,巩固新知

教师:我们学会了游戏盒子的制作,自己设计一个更加有趣的游戏盒子,课余时间和同学尽情的去研究吧!现在我们运用这节课学到的知识去解决问题吧!

1.练习十一第2。

教师:认真读题,***思考,并分享你的结论。

学生:可能是1、2、3、4、5、6,这6个数都有可能。教师:朝上的面可能是7吗?0呢?因为?

学生:不可能,因为没有7,0这两个数。

教师:如果老师想让掷出的结果一定是6朝上,可以怎样设计呢?

学生:只要正方体的六个面都写和美德数字6就可以了。

2.出示第二题,判断对错。

判断事件发生的可能性描述的是否准确,学生用手势汇报判断结果,集体订正。教师根据问题适当拓展。第四小题,引导学生明确硬币有正、反两面,抛出后可能是正面朝上,也可能是反面朝上,是不确定的。(设计意***:通过学生们相互交流、评析,感受数学就在自己身边,体会数学学习与现实的联系。让同学们判断,是让学生认识到客观事件发生的确定性和不确定性与个人愿望无关。)

四、交流归纳,全课小结

教师:有一位聪明的将***通过抛硬币让一场战争取得了不可思议的胜利,想听这个故事吗?

学生:想。出示故事,听故事。

教师:我们抛出的硬币结果是怎样的?

学生:可能正面、也可能反面朝上。

教师:而将***抛出的硬币结果是?

学生:一定是正面朝上。

教师:聪明的将***巧妙将可能变成了(一定),从而激发了士兵的信心,战胜了强大的敌人。所以信心对我们每个人都非常重要,在面对困难和挫折时,我们要充满信心,通过努力去克服困难、解决问题,就能成功!

教师:这节课同学们表现的都非常棒!请同学们对自己优秀的表现做做简单的评价吧!学生自我评价,教师给予肯定和鼓励。教师:在课堂活动中,我看到同学们个个信心满满,能积极的思考问题,大胆的汇报交流,让我们愉快的度过一节有趣的数学课,老师为优秀的你们点赞!也有一句话与你们分享(课件出示),请齐读(人人都有可能成功!)

《可能性》教学设计7

一、教材分析

“可能性”这一教学内容,属于统计与概率范畴。人教版小学数学教材分两个阶段进行教学,学生在三年级上册已经初步接触过,但只是局限在让学生初步体验有些事件的发生是确定的,有些则是不确定的以及影响可能性的直观因素。现在我们再次学习可能性,是在三年级的基础上加以深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,联系实际情况进行逆向推理,掌握影响可能性的因素。教材在编排上围绕可能性这一知识主轴,以学生熟悉的游戏活动展开教学,使学生在积极参与中直观感受可能性与因素的相互转化。

二、学情分析

1、学生在三年级上册已经初步体验事件发生的确定性和不确定性,会用“可能”“一定”“不可能”等词语描述事件发生的可能性,为今天学习可能性从定向到定量的过渡奠定了基础。

2、五年级的学生已掌握了分数的初步认识,能够初步利用生活中的经验,对生活中的常见现象发生的可能性进行正确的分析和判断。但由于学生概括能力较弱,推理能力还有待不断发展,很大程度上还需要依赖具体形象的经验材料来理解抽象逻辑关系。

三、教学目标

基于对以上教材的理解和教学内容的安排,结合课程标准的要求,我从“知识与技能、过程与方法、情感态度与价值观”三个维度确定如下目标:

1、知识目标:在游戏活动中,体验事件发生的等可能性与面积大小和数量多少的关系,逆向推理数量与可能性大小关系。

2、能力目标:让学生在观察、思考、讨论、交流中探索新知,促进学生形成良好的逻辑思维能力。

3、情感目标:通过试验活动,感受可能性在生活中的应用。从而感受数学的应用价值及魅力,激发学生学好数学的信心、爱数学的情感。

四、教学重点难点

教学重点:面积和数量对可能性大小的影响,数量与可能性的逆向认知。

教学难点:正确地分析事件发生的所有可能性,解决实际问题。

五、教学方法

本课主要采用师生互动和小组合作学习的方式,让学生在观察、实验、猜测、验证、推理与交流的数学活动中亲自实践体验,直观感受事件发生的可能性,自主探究面积和数量对可能性大小的影响,数量与可能性的逆向认知。

六、教学准备

多媒体课件一份、一个透明盒子、4支彩色粉笔和4支白色粉笔、一个黑袋、实验记录表。

七、教学过程

(一)情境导入

1、三张卡片分别写有唱歌、跳舞、朗诵,进行抽签。问题一:你可能抽到什么卡片?得出事件发生的三种情况:一定;可能;不可能。

2、课件出示计情景题:我们班在国庆前举行一次抽奖活动:一等奖奖励精美笔记本一本,二等奖奖励黑笔一支,三等奖奖励作业本一本。现在老师有一个大转盘(课件展示),让学生直观的了解到可能性与面积有关。

(二)实践活动,合作探究

1、小组合作体验可能性的大小与数量有关——教学例2

教师:可能性的大小除了和它所占的面积的大小有关以外,还有没有其他的因素也能决定可能性的大小呢?(课件出示例2)同学们,小明他们在做什么?(课件出示题干)请你帮小明猜一猜:从中任意摸出一支粉笔会有哪几种可能的.结果?引导学生说出:可能会抽到红色粉笔,也可能会抽到白色粉笔,也就是说两种均有可能被抽到。教师追问:那么抽出红色的可能性与白色的可能性哪一个大?学生猜测:抽到红色的可能性大。

教师:是不是这样的呢?我们亲自来摸一摸。小组合作的要求(出示课件):把5只粉笔放入透明盒子,闭着眼睛摸出一支做好记录后把粉笔放回,和好后下一个再摸,要求每人摸一次,记录好摸出的数据填入表格中。

教师:试验的结果和你的猜想一样吗?观察上表,你发现了什么?摸到红色粉笔的可能性与摸到白色可能性哪一个大?引导学生回答:摸到红色粉笔的次数比摸到白色的次数要多,也就是说摸到彩色的可能性比摸到白色的可能性要大。

教师追问:通过验证我们知道了刚才同学们的猜测是完全正确的。但为什么摸到彩色的可能性比摸到白色的可能性要大呢?教师继续追问:也就是说在这里是什么决定了可能性的大小呢?

引导学生回答出教师板书:可能性的大小与它在总数中所占的数量的多少有关。

2、巩固知识,提升能力——例3

用黑布把盒子盖上,先不告诉学生你面的粉笔情况(4白1彩),先按照上面的情况摸,从结果去分析数量。让学生逆向的去推理,得出可能性的大小与它在总数中所占的数量的多少有关,进一步理解数量与可能性的关系,提升学生的逻辑推理能力。

八、布置作业:

P47:2 P48:6 9

九、板书设计:

可能性

事件发生:

1、可能

2、不可能

3、一定

可能性的大小和它所占的面积的大小有关,可能性的大小与它在总数中所占的数量的多少有关。

《可能性》教学设计8

设计说明

1.关注学生的亲身体验,创设学生熟悉和感兴趣的问题情境。

“实践出真知”,在亲身体验和动手实践中获得的认知才是最真切的。教材首先创设了元旦联欢会抽签表演节目的情境,让学生在抽签活动中初步体会事件发生的确定性和不确定性,然后让学生通过“摸棋子”的试验进一步体会事件发生的确定性和不确定性,这样收到的效果胜过单纯地说教。

2.关注学生的情感体验,创设宽松和谐的学习氛围。

《数学课程标准》中将发展学生的情感、态度放在了与发展学生的知识技能同等重要的位置,体现了现代教育新的理念。本节教学设计创设了一些有用而且有趣的情境,激发了学生对知识的渴求,使他们享受从事数学活动的喜悦,使每位学生在动手实践、解决问题的过程中都能获得成就感。

课前准备

教师准备PPT课件

学生准备1个纸盒、4个红棋子、1个蓝棋子

教学过程

1、故事激趣,导入新课

课件出示“乌鸦喝水”的三幅***,请学生用“一定”“可能”和“不可能”分别说一说这三幅***上的故事。

师:在日常生活中,有些事件不能确定它发生的结果,有些事件能确定它发生的结果,类似的例子还有很多。这节课就让我们一起来研究事件发生的可能性。(板书课题)

设计意***:“乌鸦喝水”是小学语文一年级课本中的一篇文章,是学生耳熟能详的故事。借助这个故事,让孩子们用“一定”“可能”和“不挫的读音可能”进行描述,可以充分了解他们对“一定”“可能”和“不可能”这三个词语的理解以及孩子们对可能性知识的已有认知水平。

2、实践操作,探究新知

1.教学主题***。

(1)课件出示主题***,师简单介绍***意:联欢会上,通过抽卡片决定每人表演一个什么样的节目,有分别写着唱歌、跳舞、朗诵的三张卡片,如果让你抽一次,可能有什么结果?

(2)小组讨论后,派代表汇报。

小结:每名同学表演什么节目是不确定的,因为有些事件的发生具有不确定性。

3、模拟演示,教学例1。

(1)观察***(1),请学生说说***意。

师:三张卡片分别写着唱歌、跳舞、朗诵,小明可能会抽到什么节目?

预设生1:可能是唱歌。

生2:也可能是朗诵。

生3:三种情况都有可能。

师:小明抽到三种情况都有可能,这说明了什么?

(事件的不确定性)

《可能性》教学设计9

随着科学技术的发展和社会生活的高度社会化,大量的信息数据需要处理,出现许多决策问题需要人们去分析、评价,统计知识及其方法已渗透到了人类活动的每个领域里的策略分析方面,已成为现代数学方法的一个重要部分和应用数学的重要领域。统计知识已作为数学教育基础知识的组成部分,同时也是培养学生运用所学知识解决实际问题的重要途经。北京市21世纪数学实验教材从一年级开始,就结合生活实例、通过例题的教学对学生渗透有关统计的初步知识,以使学生在教学活动中感受统计的意义,了解统计的基本方法,体会数学在生活中的广泛应用。

《可能性》一课是数学教材第四册第十单元的内容,本课的教学目标是“学生初步体验有些事件的发生是确定的,有些则是不确定的”,让学生初步感受、体会概率知识存在于日常生活中。对小学生来说,他们学习的概率知识主要是以直观为主的。在教学时,要让学生多观察多实验,亲自实践、体验,在游戏中获得确定性和不确定性的直观感受。从而获得有用的概率基础知识,用来解释生活现象,更为全面地分析问题,作出一些简单的判断和推理奠定基础。

我在课堂教学过程中就如何体现课改新理念进行了积极的尝试。具体做法如下:

一、游戏激趣,谈话导入

同学们你们看这是什么?今天这几只小螃蟹要进行一场跑步比赛,它们都雄心勃勃,想取得胜利,不信你听!(课件)你们说说谁能得第一?(个别发言)要是再来一场比赛呢?

是呀,在不同场次的比赛中,每一只螃蟹都有可能取胜,这就是可能性。这节课我们就一起动手动脑来体会可能性。

二、活动体验,自主探究

(一)师生共同体验“一定”,“不可能”

1、我们先来做个摸球的游戏:(出示一个口盒都是粉色球)

师:我这有一个神秘的盒子,里面装着一些彩球,都有可能是什么颜色的呢?,谁来摸一个给大家看看?(指名到前面)

(1)你们猜猜他摸出的可能是什么颜色的球?

(2)你说说你有可能摸出什么颜色的?(摇一摇,不能偷看)

(3)我也想猜猜,你摸出的一定是粉色的。(生拿球)给我点鼓励

(4)谁还想摸?你摸出的可能是什么颜色的?

(5)我猜一定还是粉色的。

(6)谁还想来试试?

(7)你知道这个盒里的小秘密了吗?(指名)想不想验证一下(一个一个拿)

小结:正像你们所说的,这个盒子里都是粉色的球,任意摸一个,摸出的一定是粉色球。(板书:一定)

2、师:在这个都是粉球的盒子里,有可能摸出你们刚才所说的黄色……的球吗?为什么?

小结:是呀,正因为这个盒子里没有黄色……的球,任意摸一个就不可能是黄色的。(板书:不可能)

(二)小组合作,体验“可能”

师:在我们摸球的同时,有几个小朋友也在摸球,看看他们是怎么摸的?(录象)

师:看明白了吗?做这个游戏时应该注意什么?

不能偷看(一会儿在做游戏时,大家都来做监督员,互相监督,不能偷看。)

结果怎么办?组长要做好记录。摸到红球就在红球那做个标记……

你们都等不急了吧,在组长的位子里也有这样的一个盒子,请静静的快把它拿出来,在组长的带领下按顺序摸球,请把结果填在表一中。(小组活动)

师:我们统计一下,你们组摸到粉球几次,黄球几次(按组说)

师:观察每组摸到粉球和黄球的次数,你发现了什么?

全班同学一共摸到粉球几次,黄球几次,我们一起算一算。

师:我们全班同学一共摸到粉球……次,摸到黄球才……次,你想到了什么?

师:盒子里两种颜色的球到底有几个,你想知道吗?请组长把球拿出来,数一数。(3粉1黄)把球收到盒子里

总结:刚才我们同学真了不起,盒子里粉色球的个数多,我们摸到粉色球的次数就多,所以就说,摸到粉球的可能性大(板书)

相反:黄色球的个数少,摸到的次数就少,所以说,摸到黄球的可能性小。(板书)

师:请你想一想,盒子里有10个粉色的球,1个黄色的球,摸到粉球的次数会怎样,摸到粉球的可能性呢?

如果有20个粉球黄球还是1个,这时怎么样?

如果盒子了全是粉色的球,怎样呢?

师:大胆的想像如果盒子里粉球黄球的个数同样多,那摸到粉球、黄球的次数会怎样?

师:你们猜的对吗?我们来验证验证

请组长在盒子里放上同样多的粉色、黄色的球,可以是2粉2黄,也可以是1粉1黄。多余的球怎么办?把摸球的结果记录在表2(小组活动)

师:观察每组摸球的次数,哪个组摸到球的次数比较相近,看着结果,你想说些什么?一起算出全班摸球的次数,全班摸出粉球……次,黄球……次,你想说什么?是不是像刚才记录的那样相差的很多?

总结:当粉球、黄球个数同样多时,我们摸到两种颜色球的次数非常相近,可能性也是相近的。

三、联系生活,学以治用

1、在我们的日常生活中,也存在着许多可能性的问题,有些事情是一定会发生的,有些事情是不可能发生的,还有些事情是不能确定的。下面我们来做个小练习。

2、像这样的例子有很多,你能说说吗?

3、这节课每名同学都能开动脑筋,学到了新知识,那谁最聪明,谁的反映最快呢?我想利用旗子做个小测试,谁愿意参加这个测试?请你快速快速的拿出旗子。

小结:看来你们的反映的都很快,反映能力都很强。

四、总结全课

这节课,我们通过摸球游戏研究了可能性的问题,其实生活中好多事物具有可能性,希望你们在学习上勤动脑勤思考在生活中发现更多的数学问题。

课后反思:

在本节课的教学中创设了“联系、发展的游戏情境”,使全体学生在好奇、有趣的情感体验中有序、有效地完成了试验探究、尝试应用的学习任务。课后将成败进行了反思:

1、我认为实践是学生最好的老师,学生在实践活动中学到的知识往往会记忆深刻。因此,我在这节课中创设小螃蟹赛跑、神秘的盒子等情境,调动学生的学习兴趣;以多种的活动形式,让学生亲身参与到摸球的实践活动中来,只有这样,学生的思维才能展开,问题也才会自然地被学生发现,解决。

2、课堂上时间分配比较合理,学生参与面广,游戏的广度深度符合学生的特点,整堂课气氛活跃,能够体现学生的主体地位。

3、虽然是一节实践活动课,数学的思维方法还是要渗透的。在计算全班共摸到两种颜色的球各几次时,渗透了怎样计算更简便。

在第一次师生共同摸球时,就渗透了一些摸球的方法:摇一摇,不能偷看。为后面的小组实践打下了基础。

4、尊重相信每位学生,给他们充足的探索空间。

当然在活动过程中也存在着一些问题:

1、在倾听学生发言时,还不够耐心,有时有抢话的现象。

2、板书可采用***文结合,贴近学生的理解水平,更具体形象地做到表达的有效性、条理性。充分让学生有意识地获取和读懂板书,形成合理的质疑。

3、课上有些问题的思考价值不高,如“我这有一个神秘的盒子,里面装着一些彩球,都有可能是什么颜色的呢?”这样的问题使学生没有依据的猜测,在提问时应少叫几个学生回答。有些问题没有什么思考的价值发,如:“拿出来的球怎么办?”

4、应该增强个别环节的实效性。第二次合作摸球,应该在第一次的基础上,让学生在小组内充分的思考,讨论,甚至在摸球的次数上也可增加,从而使学生在合作探索中更深刻的体验到当两种球的数量同样多时,摸到两种球的可能性是相近的。这样能使知识自然的有所升华。

5、“偶然性”提出的时机不够准确。可以在分析完全班总体情况之后,再回到个别有问题的组,提出“偶然性”的问题,这样学生会更明白。

《可能性》教学设计10

教材分析

在三年级的学习中,学生已经认识了可能性的大小,在四年级的学习中,他们又认识了等可能性,而本学期所学的概率知识主要是用分数表示可能性的大小,所以说,本学期所学的内容是在前两个年级的基础上的一个延伸与发展。教材在呈现本专题的内容时分为三个部分:首先呈现了提供给学生开展试验活动的材料,通过学生的试验进一步体会摸出一个球颜色的可能性的大小;其次呈现了“想一想”的内容,通过讨论第1盒与第2盒摸球的结果,将描述可能性的语言“不可能”与“一定能”转化为数据表示,即客观事件中“不可能”出现的现象用数据表示为“可能性是0”,客观事件中“一定能”出现的现象用数据表示为“可能性是1”,通过这种描述语言转化为数据表示的过程,为学生后续用分数表示可能性作了铺垫;再次呈现了“说一说”的内容。由于学生已有前面的基础,在“说一说”的过程中,将重点讨论第3盒与第4盒摸球结果的表述方法,即用分数的形式,具体地表述可能性大小的结果。

教学策略分析

在教学活动中,根据教材呈现的内容及学生的实际情况拟安排以下教学的程序。

一是在实验操作中,复习可能性大小的认识,同时通过这个实验操作起到激发学生学习兴趣及导入课题的作用。在三、四年级,学生已经有了可能性大小的认识,所以在导入新授的阶段,教师组织学生进行“摸球比赛”活动。本活动按“摸球比赛——猜想——验证——导入”的活动过程,让学生可从活动中体验出可能性是有大有小的,从而导入课题。并以此活动为后续教学埋下伏笔,当然还起到一个激发学生学习热情的作用。

二是探究如何将“不可能”、“一定能”、“可能”等描述性语言转化为数据表示。学生通过自己的探究及全班同学的合理筛选后,得出像第1盒这种不可能摸出白球的,可以表示为摸出白球的可能性是0,而像第3盒这种一定能摸出白球的,可以表示为摸出白球的可能性是1。接着,教师可趁热打铁,让学生用“可能性是0”和“可能性是1”来说明生活中的不可能事件和必然事件。之后,教师把重点放在探究第2盒这种可能摸出白球的情况,可用什么数据来表示合适?这是本课的重点也是难点。最后让学生在思辨中得出可用分数来表示可能性的大小。

三是通过一定的练习让学习会用数来表示事件发生的可能性大小。这个练习重点放在不确定事件的发生的可能性大小上,且练习的要求是逐层提高,以让不同的学生能有不同层次的发展。

教学内容:北师版五年级上册第87页内容 摸球游戏

教学目标:

1、通过试验操作活动,进一步认识客观事件发生的可能性大小。

2、能用适当的数表示事件发生的可能性大小 。

教学重难点:

重点:会用数表示可能性的大小。

难点:会用数表示可能性的大小。

课前准备:

1、1、3个箱子,里面分别装着5黄球、1白球4黄球、5白球。3个放球盆。

2、8个放球盆,里面放1白球2黄球。

3、每生2张表格。多媒体课件一套。

教学设计:

[ 片断一] 游戏激趣,导出课题

1、游戏激趣:教师提供三个箱子,里面分别放有5个黄球,1个白球4个黄球,5个白球,让学生分组进行摸球比赛,看哪个组摸到的白球最多为胜。

(请3个学生参加,每人代表一组。每次只摸出1个球,摸出后要先把球先放去才能再摸,每人摸6次)

2、引疑揭题:由不不负韶华的意思公平的比赛让学生产生疑问,再从摸出的结果中导出“不可能、可能、一定能”,并从“可能”中引出可能性有大有小,同时引导学生质疑,难道只能用以前学过的这些文字来表示可能性的大小吗?进而由此引出课题。(教师板书课题)

[设计意***:兴趣是最好的老师,课初以学生熟悉喜欢的游戏比赛引入,生动有趣,激起学生的学习欲望和疑问,并从学生的争辩意见中引出课题,起到较好的导入效果。]

[ 片断二] 动手操作,自主探究

1、引导学生***思考,自主探究:要分别用什么数表示这三个箱子摸到白球的可能性的大小。让学生把数填在表格上,同时课件出示如下表格。

2、学生汇报,教师板书出学生的不同的表示法。 [ 设计意***:把课堂交给学生,要让学生尽可能地自己去发现,去创造,教师只是这个过程的引导者,这样培养出来的学生才有创新能力。本环节是在学生强烈的学习欲望被调动后,马上抓住最佳的思考契机,让学生探究“可以用什么样的数”分别表示三个箱子摸到白球的可能性大小,由此能产生较好的探究需要,也为下面的讨论研究提供了平台和素材。]

[ 片断三 ]质疑筛选,形成新知

1、先引导质疑:是不是几位同学所举的这些数可以用来分别表示上述三种摸球的结果呢?接着让学生先探究“不可能”和“一定能”的两种情况分别用什么数表示比较合适。

引导学生从“不可能发生的”的几种方法中,找出合适的表示方法(可能性是“0”——用“0”表示简单明了)。再用同样方法找出“一定能发生”的现象——用可能性是“1”来表示。

2、适时解释应用:让学生例举生活中上述两种现象的例子,并用语言进行相应的表达。

[ 设计意***:通过学生生成的资源,让他们在争辩中分析取舍,教师在关键处给予引导,在学生对“不可能”可用“0”表示、“一定能”可用“1”表示的意见认同后,及时联系生活实例,能使学生感悟到数学源于生活又高于生活;这样的设计不但体现学生的学和教师的导的和谐统一,而且针对性强,课堂效率高。]

3、再组织学生通过对2号箱摸到白球的可能性大小及同学所写的不同数的分析中,确定可以用分数“ 1/5”来表示比较恰当。

(1)启发引导:为什么可以用1/5来表示呢?

教师:(拿出2号箱的1个黄球)这个球有可能被摸到吗?这就是一种可能;(再拿出另1个黄球)这个球有可能被摸到吗?现在有几种可能?(指着箱中所有的球)这个箱子中的5个球都有可能被摸到吗?总共有几种可能?其中摸到白球的可能有几种?所以,摸到白球的可能性大小用数来表示应该是多少?从而让学生理解用分数表示可能性大小的意义。

(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。

[设计意***:本环节是本课的重点也是难点,学生只是初步知道可以用1/5来表示2个箱摸到白球的可能性的大小,但对到底为何能用且要用这个分数来表示并不完全理解。所以这里教师的启发引导显得特别重要。当学生初步了解用分数来表示可能性大小的意义后,及时进行练习,使学生学得扎实有效。]

(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。

[设计意***:本环节是本课的重点也是难点,学生只是初步知道可以用1/5来表示2个箱摸到白球的可能性的大小,但对到底为何能用且要用这个分数来表示并不完全理解。所以这里教师的启发引导显得特别重要。当学生初步了解用分数来表示可能性大小的意义后,及时进行练习,使学生学得扎实有效。]

[ 片断四 ] 归纳总结,提升认识,发展思维

1、归纳总结:

师:以前我们只会用文字来表示可能性的大小,通过今天的学习,我们又懂得了用数来表示可能性的大小,会更加准确明了。

2. 提升认识,发展思维:

借助线段***

让学生知道,可能性的大小还可以通过线段上的点来表示。在教学时,注意引导学生观察某一点从线段的左端到右端,从线段的右端到左端的位置移动引起可能性大小的变化情况,直观描述可能性的变化趋势。

[ 设计意***:在这个环节,教师引导学生进行归纳总结,让他们对知识有一个系统的认识是非常重要的。同时,教师在介绍用线段上的点来表示可能性的大小的同时,抓住有利时机,结合作线段***等动态的演示过程,自然而然地向学生渗透了“数形结合”和“极限”的数学思想。]

[ 片断五 ] 应用数学,活用数学

(一)基本性练习

1、填空:

(1)抛掷一个骰子,出现3点朝上的可能性是( ) 。

(2)某单位有73名员工举行抽奖活动,总共有73张奖票,每个员工都能中奖。设有一等奖3名,二等奖10名,三等奖60名,第一个抽奖者能抽中一等奖的可能性是()。

(3)如右***,转动转盘,指针指向阴影部分

的可能性是()。

2、判断:

(1)据推测,今天本地降雨的可能性是4/5,意思是今天本地一定有雨。( )

(2)抛掷一枚硬币,正面朝上的可能性是1/2,也就是说,抛20次就一定有10次正面朝上。( )

(二)拓展延伸:

*挑战自我:盒子中放着只是颜色不同的3个球,其中2个黄球1个白球,现在要求一次拿出两个球,你认为拿到2个都是黄球的可能性是多少?

师根据学生的回答板书出 1/3、1/2、2/3

合作,交流:学生先认真观察,然后再在小组内交流:用哪个数表示才对?教师巡视。

学生汇报,争辩。针对学生不同意见,教师作如下引导:

1、化抽象为形象。

请1男2女3个同学上台,分别代表1白球和2黄球。

问:把其中不同的两个球(同学)配成一对,总共有几种结果?(几种可能)?(生:3种)而拿到2个都是黄球的可能有几种?(1种)所以可能性是?(生:1/3)

2、化形象为抽象。

师:(课件)把这三个球排成一排,并分别标上字母a、b、c;

问:你能用以前学过的搭配中的学问来解释这个问题吗?(生:可能是ab也可能是ac,也可能是bc) [“课标”中强调,要让学生学有价值的、必需的数学,让不同的学生能有不同层次的发展。所以这部分的拓展练习,不仅使学生加深对用分数表示可能性的大小的意义的理解,而且还能让不同的学生能有不同层次的发展。在练习中,教师让学生先进行***思考,观察、分析,在形成自己的认识后,再进行交流。这样留足了思维空间,使学生能有效地学习。同时教师的引导也十分讲究,为帮助学生理解,先通过模拟演示,化抽象为形象,再联系已有知识,进行,化形象为抽象,体现了数学化的建构过程。]

《可能性》教学设计11

一、导入

谈话:同学们,你们喜欢玩游戏吗?(喜欢)今天这节课我们就一起来玩游戏。

出示一枚硬币,把双手背后,把硬币藏在一只手里,再伸出双拳,让学生猜硬币在老师那个手里?

师:在老师没松手之前,你估计硬币在老师哪个手里?今天这节课我们就一起来学习可能性的知识。(板书:可能性)

二、探究可能性以及可能性是有大小的

(一)摸球中体验“可能”

师:同学们,你们玩过摸球游戏吗?(玩过)那我们一起来玩摸球游戏好吗?(好)摸之前我们一起来明确下摸球的要求,哪位同学愿意来给大家读一下摸球活动的要求(指名回答)现在大家明白要求了吗?(明白了)那开始游戏吧。活动结束之后在黑板上汇总

1、1-4组请这几组同学分别说说你们八次摸到了什么颜色的球?(指名回答)请这四组的组长拿出来看下袋子里装的是什么颜色的球。(1个红球和1个黄球)。

在这样的口袋里任意摸一个球,可能摸到哪种颜色的球呢?。(红球或黄球)

小结:任意摸一次,都有两种可能的结果,可能摸到红球,也可能摸到黄球。

2、5组看到这一组同学的摸球记录,你有什么想法?(可能里面装的是2个红球)。那我们请这一组的小组长拿出来给大家看一下

师:大家真棒,猜的十分的准确。这个袋子里确实装了两个红球。

在这个口袋里摸球,结果会怎样?任意摸1个,可能会摸到哪个红球呢?

小结:在这个袋子里摸,一定摸出红球,可能是1号红球,也可能是2号红球。

3、6组看到这一组同学的摸球记录,你又有我的主题曲什么想法呢?(可能里面装的是2个黄球)。那我们请这一组的小组长拿出来给大家看一下

师:大家真棒,又猜对了。这个袋子里确实装了两个黄球。

在这个口袋里可能摸出红球吗?(不可能)

小结:在这个袋子里摸,不可能摸出红球。

(二)摸牌中感悟“可能性大小”

师:刚才同学们表现的很棒,看,谁来了?出示刘谦的照片?这是著名的魔术师刘谦,他呢准备给大家来变个魔术?你们想看吗?(想)那我们一起来看下,看他给我们带来了四张扑克牌,分别是红桃A、红桃2、红桃3、红桃4,思考一下,从中任意摸1张,可能摸到哪一张?摸之前能确定吗?(不能确定,有四种可能)

师:下面我们把牌合上,魔术开始啦,魔术师把红桃4变成了黑桃4,现在4张牌中有3张红桃和1张黑桃,现在任意摸1张牌,可能摸到哪一张?(红桃A、红桃2、红桃3、红桃4)摸出红桃的可能性大,还是黑桃的可能性大?(红桃)为什么?(红桃的张数多)

我们同学都同意吗?(同意)那这是我们的猜想,我们要证实我们的猜想,我们需要(试一试)那我们来进行摸牌游戏吧。摸之前老师来给大家明确下摸牌的要求。

这次要请组长进行合理分工,一人洗牌,一人记录(用写“正”的方法,最后写成数字)另外六人每人摸5次,共摸30次。

红桃共()次

黑桃共()次

4、组织交流。看到这六组同学的摸牌记录,你有什么想法吗?(摸到红桃的的次数比摸到黑桃的次数来的多)

师小结:现在摸出的牌共有4种可能,红桃有3种可能,黑桃有一种可能,所以红桃摸出的可能性大,黑桃摸出的可能性小的。说明可能性是有大小的。

三、巩固练习

师:老师想看看我们的同学的掌握情况,我们一起来练一练

1、在下面的袋子中可能摸出红球吗?指名回答(1号和2号可能,3号不可能)能说说你的想法吗?哪个袋子摸出红球的可能性最大呢?

2、在下面的四张牌中任意摸一张一共有几种可能?(四种)可能摸出什么牌呢?指名回答(梅花6,梅花10,梅花8,梅花6)摸出几的可能性最大?(6)因为梅花6有两种可能

摸出梅花10和8的可能性(相等)

3、装盘中也存在着可能性,我们一起去看看吧

(1)转动哪个转盘,指针偶尔落在红色区域呢?偶尔是什么意思呢?(很少,可能性很小)

(2)转动哪个转盘,指针经常落在红色区域呢?经常是什么意思呢?(很多,可能性很大)

(3)转动哪个转盘,指针偶尔落在红色区域和黄色区域的可能性相等呢?指名回答

四、丰富体验,加深认识

师:同学们掌握的很不错,老师打算奖励大家再玩一个游戏,实践操作

1、装球:往口袋里装6个球,要求从中任意摸一个球,可能是蓝球。(学生小组合作装球,装好之后展示,组长分别说说)上面的同学能根据摸到蓝球的可能性大小排排队。(大到小依次站)

师小结:可能性是有大小的

2、展示你知道吗,知识拓展,摸硬币实验,硬币抛出之后,有几种可能呢?(两种)可能正面朝上,也可能反面朝上。

五、链接生活

其实,像这样藏着“可能性”的游戏生活中还有很多,元旦期间超市准备开展回馈顾客活动,凡是在超市一次性购物满1000元的均可以转动转盘一次,一等奖自行车一辆,二等奖电水壶一个,三等奖护手霜一支。如果你是超市老板你怎么设置一、二、三等奖?指名回答(绿色一等奖,蓝色二等奖,黄色三等奖)

师:大家都十分的精明,长大后一定都会成为出色的老板。

六、全课小结

大家今天表现的十分不错,老师准备送一段话给大家作为奖励,我们一起来看下吧,但是其中有几个空需要大家用今天学的知识来补充完整,你们能做到吗?(能)

我们从出生到长大(一定)得到了周围许多人的关爱与呵护,时光(不可能)倒流,在成长的路上,我们(可能)会遇到很多挫折,不要怕,对自己说“我能行,我可以”。

《可能性》教学设计12

课题统计与可能性1课型新授

第一课时

教学目标

1、经历与体验收集、整理、分析数据的过程,学会用画正字的方法收集整理数据,体会统计是研究解决问题的方法之一。

2、经历试验的具体过程,能对试验可能发生的结果做出简单判断,并做出适当解释,从中体验某些事件发生的可能性是相等的。

3、培养积极参与数学活动的意识,初步感受动手试验是获得科学结论一种有效方法,激发主动学习的积极性,进一步发展与他人合作交流的意识和能力。

教学

重难点重点是通过活动认识一些事件发生的等可能性,难点是理解任意摸一次球,红球和黄球的机会是相等的。

教学准备教学课件,红球、黄球、布袋若干,正方体

教学过程设计

第一课时

教学内容师生活动

一、故事导入,复习活动

3—5分钟

二、活动体验,感受过程

20—25分钟

三、拓展深化

5—10分钟

四、课堂总结

3—5分钟

1、阿凡提的故事:阿凡提在地主巴依老爷家辛辛苦苦一年活,小气的巴依不想付工资给阿凡提,于是想了个歪主意.对阿凡提说:“阿凡提,我这儿这两张纸条让你抽,上面分别写着“付工资”“”和“不付工资”,如果你抽到哪一张,我们就按哪一张上写的办,你还是有一半机会的哦”。如果你是阿凡提,你会怎样想?(引出“可能”)

2、复习“一定”“可能。”

(1)出示装有3个红球的口袋,提问:如果从中任意摸出一个球,该用哪种词语来描述摸球结果?(一定摸出是红球)

(2)往口袋加入3个黄球,提问:如果从这样的口袋中任意摸出一个球,该用哪种词语来描述摸球结果?(可能摸出是红球,可能摸出是黄球)

3、揭题:在我们生活中,有些事情一定会发生,有些事情不一定会发生,只能说具有可能性,今天,我们继续研究可能性问题。(板书:可能性)

1、掷硬币游戏,初步感受可能性。游戏规则。

(1)竖着把硬币放在10厘米左右的高处让硬币自由落在杯中每人抛10次。

(2)用自己喜欢的方法在草稿纸上做好记录。

(3)抛完后,小组长统计本小组的情况并汇总,填好记录表,组内同学共同校对。

(4)活动时我们要互相合作,有秩序,保持安静。

教师统计:思考:出现正面和反面的可能性是怎样的?先在小组里讨论.

(结论:有正有反,次数差不多)

2、摸球游戏

(1)猜测

出示口袋:口袋加入3个黄球,提问:如果遮住眼睛从这个口袋中每次任意摸出一个球,摸出以后再把球放回口袋,一共摸40次,猜一猜,红球和黄球可能各摸多少次?

学生自由猜测。(许多伟大的发明和发现都是从猜测开始的,如歌德巴赫猜想,但有了猜想还要继续验证。数学家陈景润经过验证,证明了歌德巴赫猜想因为实践是检验真理的唯一标准)。

(2)验证

这仅仅是我们的猜测,向知道自己猜测的对不对,我们可以怎么做?(摸一摸)

游戏规则:1、摸前先把袋中球搅一搅,然后转过脸去从中任意摸一个,摸出后回头看一看,给大家看自己摸到的是什么颜色的球,把球再放入口袋中,按这样,大家轮流摸,一共40次。2、组长用画“正”字的方法来记录。

3、摸完后,组长填写统计表,其他同学负责校对。

4、活动时我们要互相合作,互相谦让,控制好音量,请各小组在小组长的带领下分工。

怎样用画“正”的方法来记录,谁来给我们介绍一下?教师在黑板演示一下。

A、明确分工:活动时我们要互相合作,互相帮助,这样才能顺利完成任务,请各小组在小组长的带领下分工,组长记录,副组长数次数,其余监督。

B、活动体验:学生分组试验,填写统计表,教师巡回指导

(3)归纳

小组汇报统计结果,教师实物展示。

红球

黄球

合计红球黄球

次数

提问:统计的结果和我们的猜测差不多吗?我们将各小组结果进行比较,你有什么发现?如果继续摸下去,摸到红球的次数和黄球的次数会怎样?

学生:摸到可能是红,也可能是黄,次数差不多。

可能红的多一些,也可能黄的多一些。

3、老师对学生的回答进行小结:在篓子里红黄球个数相同的情况下,从篓子里每摸一个球,摸得次数又比较多,那么摸到红黄球的次数是差不多的。这就说明在这种情况下,任意摸一个球,摸到红黄球的机会是相等的,也就是说摸到红黄球的可能性是相等的。

小结并揭示学法:说明从装有3个红球和3个黄球的袋子任意摸出一个球,摸到红球和黄球的机会是相等的,也就是说可能性是相等的。

提问:

(1)我们是用什么方法来记录摸球的结果的?你觉得用画“正”字的方法好不好?(记录简便,整理迅速),

(2)记录之后我们又对数据作了怎样的处理?(填入统计表板书:统计可)见我们用统计的方法来研究事情发生的可能性是一个很好的方法。

(3)通过试验和统计得到什么结论?(摸到红球和黄球的可能性是相等的)

用的是什么方法?

小结:猜测----验证----结论

过渡:想不想用我们刚才的方法做第三个游戏?

五、抛小正方体

教师出示两个面上都有1、2、3的小正方体。

游戏规则:

1、按顺序上抛小正方形,不宜太高,看落下时“1”“2”“3”朝上的次数,按这样,大家轮流抛,一共30次。

2、组长指派一人用画“正”字的方法来记录。

3、抛完后,组长指派一人填写记录表和统计表,其他同学负责校对。

学生体验。填写表格

朝上的数字123

次数

《可能性》教学设计13

教材分析

本课时主要让学生通过简单实验,认识可能性的大小,并在此过程中学习画“正”字记录数据。这部分内容的教学,一方面可以使学生加深可能性的认识,为进一步学习游戏规则的公平性以及定量分析可能的大小奠定基础,另一方面可以使学生掌握更多的收集整理和描述数据的方法,提高用统计方法分析和解决问题的能力。

学情分析

在二年级上册的统计与可能性单元中,学生已经学习过一些简单的可能性知识,知道有些事件的发生是确定的,有些事件的发生是不确定的,会用“一定”“可能”“不可能”等词语描述一些简单的事件发生的可能性。这些是学习本单元的直接基础。此外教材在此安排的画“√”记录数据、涂方块表示数据,以及分类数据等内容对本单元内容的学习也有着重要的影响。学生可以理解和接受常见事件发生的可能性,但对可能性的大小还很抽象,如果没有相应实验数据的支持,要让学生感受新知、应用新知确实有点牵强。

教学目标

1、 使学生通过摸球、根据情境设计方案、判断等活动,初步体会某些事件发生的可能性是相等的。

2、经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集和整理数据,体会统计是研究、解决问题的方法之一。

3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

教学重点和难点

教学重点是通过活动认识一些事件发生的可能性。

教学难点是理解任意摸一次球,摸到红球和黄球的机会是相等的(可能性是相等的)

《可能性》教学设计14

教学内容:

人教版课程标准实验教科书《数学》五年级上册p99-100,可能性。教学目标:

1、初步体验事件发生的等可能性以及游戏规则的公平性,会用

分数表示事件发生的可能性;

2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖

析与解释,使学生初步体会数学与生活的紧密联系。

教学重点:

体验事件发生的可能性以及游戏规则的公平性,会用分数表示

事件发生的可能性。

教学难点:

能按要求设计公平的游戏方案。

学具准备:

扑克牌若干张;课件

教学过程:

一、感知:

1、师:(点击主题***)请看,它们正准备做什么呀?(在踢足球)踢足球是一项很好的体育运动。那么,你知道足球场上裁判是怎样决定哪个队先开球的吗?

(生:抛硬币)

师:这种方式公平吗?为什么?

(生:公平。因为一枚硬币只有正面和反面,每一个足球队都有50%的先发球的机会;……)

师:为什么会是50%?生说出现几种情况?两个队猜的是其中的几种情况?除了用百分数表示外,还能用简洁的分数表示吗?(板书分数)你会想到哪个分数?(生说1/2)(教师同时板书:1/2)为什么是1/2?这个2表示什么?1呢?

2、引出课题:用分数表示可能性的大小

师:谁都不吃亏。这节课我们就要来研究(指)读“用分数表示可能性的大小”。

师:看到这个课题你想到了什么问题?

3、提出问题:

生1:都有什么分数呢?

生2:可能性有多大?……(根据学生说的重点圈出字眼)

【评析:联系学生的生活实际,由“足球比赛”引导学生探索事件发生的可能性,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验。】

二、认识:

(一)活动一:

师:大家想一想,如果我抛掷10次,正面大约可能出现多少次? 为什么?

师:同意他的说法吗?抛掷20次呢?

师:那么正面朝上的可能性和反面朝上的可能性都是1/2,是公平的。那么大家想一想如果我们实际操作的时候又是怎么样的呢?想不想试一试?下面我们来做一个实验。请看实验步骤:

1.每组抛20次,并把结果记录下来;

2.选择合适的统计方法正面朝上的次数

3.试验完成后思考:正面朝上的次数与总次数有什么关系。

1、两张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?

师:看来可能性的学问还真不少,我们就来研究它吧。将在游戏中学习好不?(好)好好好,请看游戏规则(课件出示)那你们得耐心等一等,我先玩,再到你们玩,比比看,谁找到的知识多。我手上有两张牌一张红桃a,一张红桃2。把牌反扣在桌面上,从中任摸一张,摸到红桃a的可能性是几分之几?

生:1/2。(齐说)

师:声音这么宏亮,怎么想的?

生:……

2、三张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?(1/3)

师:为什么会出现不同的分数?

3、四张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?(1/4)

4、要使摸到红桃a的可能性为1/6,那怎么办?

(二)活动二:

1、问:现在轮到你们了,要按游戏规则来。看看你们找到的相关可能性的分数多还是教师多,开始吧。

2、生汇报:

师:哪个组派代表先来说?

组1:(几分之一)我们的牌是红桃a、2、3,黑桃a,2,3。把牌反扣在桌面上,……

组2:(几分之一)我们找到了……

组3:(几分之几)我们找到了…我爱家乡手抄报…

组4:(几分之几)先说分数,再说是什么牌。……

组5:还用不同的分数表示几一个可能性的问题。……

3、师小结:从活动中看到大家能互相帮助,互相关心,互相提醒,做到我会你也会,我明白的你也要明白,真是不易。

三、实践:

1、圆饼***。(自做)

2、有两家超市促销,在购物满100元后都可以从袋里摸奖,摸到红球赠20元。你会选哪家超市?为什么?

安盛超市:袋里装9个球(其中有3个红球)

永信超市:袋里装4个球(其中有2个红球)

3、选一选。

4、3个正方体。

四、归纳

1、师:这节课你学会了什么?

2、师:是啊,你们的表现让听课老师和我都认为你们特智慧、特勤奋、特精彩。我相信智慧和勤奋会让你们攻克一个又一个的数学问题,成就你们一次又一次的精彩。祝愿孩子们课课有精彩,一生精彩!下课。

《可能性》教学设计15

设计理念

创设活动情境,促进新知建构。“用分数表示可能性的大小”是在学生(第一学段)学了“可能”与“一定”,初步体验了事件发生的可能性有大有小(四年级)和初步体验事件发生的等可能性的基础上进行教学的,是实现可能性从定性到定量描述的重要内容。“概率”因其有别于讲究因果关系的逻辑思维和确定性思维,具有独特的思想方法。因此,本课知识的建构和能力的形成不能只凭教师口述,而要通过创设数学活动情境,为学生提供观察、猜测、合作交流的机会,让学生在亲历活动过程中体会如何用数来表示可能性的大小。如课始摸球比赛后提出“如何表示从三个箱子中摸球的结果”,沟通了学生已有知识经验;“还有别的表示可能性大小的方法吗”则引导学生从活动中抽象出“数”,进而用“数”表示可能性大小,促进了知识的迁移;课末“归纳总结用数表示可能性大小的方法”,提升了学生对知识的系统认识,帮助学生建构新知。

加强合作交流,引导自主探索。《数学课程标准(实验稿)》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”教师以“分别用什么数来表示从这三个箱子中摸到白球的可能性大小”和“为什么用1/5来表示从2号箱中摸到白球的可能性”,引导学生自主探究、合作交流,教师适时引导,较好地体现了课程改革理念。

渗透数学思想,发展数学思维。在学生知道用数表示可能性大小的基础上,适时引入用线段上的点表示可能性大小,让学生感悟数形结合的数学思想;在引导的同时,抓住有利时机向学生渗透极限思想,不仅发展了学生的数学思维,还凸现了数学教学的基础性、发展性理念。

教学目标

1.庄子大宗师通过试验操作活动,进一步认识客观事件发生的可能性大小。

2.能用适当的数表示事件发生的可能性大小。

3.在具体情境中体验可能性的大小,加强对数学实践性的理解。

教学过程

一、导出课题

1.激趣。老师提供三个箱子:1号箱里面放有5个黄球;2号箱里面放有1个白球和4个黄球;3号箱里面放有5个白球。请3个学生进行摸球比赛,摸到白球最多的获胜。摸球前,各自选一个球箱,并且只能在选定的箱中摸球。每次摸出1个球,记录后放回去再摸,每人摸6次。

2.揭题。教师从摸球的结果导出“不可能”、“可能”、“一定能”,进而从“可能”中引出可能性有大有小,同时引导学生质疑:还有别的表示可能性大小的方法吗?(教师板书课题)

[课始从学生熟悉的游戏引入,能激起学生的学习欲望。]

二、自主探究

1.引导学生***思考,自主探究:可以用些什么数分别表示从这三个箱子中摸到白球的可能性大小。(师生共同完成表格)

2.学生汇报,老师板书学生的表示方法。

[探究可以“用什么数”分别表示三个箱子中摸到白球的可能性大小,促进学生积极主动地参与,为后续的研究提供素材。]

三、强化新知

1.讨论:

(1)从2号箱中摸到白球的可能性大小可用哪个数表示?(学生可能会用20%、0.2、1/5表示。)

(2)为什么可能性用1/5表示呢?(引导学生分析分子、分母分别与试验中的什么有关。)

(3)师(拿出2号箱中的1个黄球):摸到黄球的可能性怎样表示?为什么这样表示?

引导小结:从2号箱中摸球,可能摸到黄球,也可能摸到白球。但由于箱中黄球、白球的数量不同,所以摸到黄球和白球的可能性也不同。

[本环节是教学的重点也是难点。学生初步知道可以用1/5表示从2号箱中摸到白球的可能性大小,但开始时学生对用这个分数表示并不完全理解。因此,教师的引导显得特别重要。]

2.探究:怎样表示“不可能”和“一定”。

从1号箱中可能摸到黄球吗?白球呢?可以分别用什么数表示摸到黄球、白球的可能性大小?

(类似地让学生自行设计从“3号箱”中摸球的方案并解答。)

3.练习:教师往2号箱中依次加入1个黄球、1个白球、又1个白球,让学生分别说出能摸到白球、黄球的可能性大小。

[学生初步了解用分数表示可能性大小的意义后,及时进行巩固练习,使学生学得扎实有效。]

四、总结提升

1.归纳总结用数表示可能性大小的方法。

2.提升认识,发展思维。借助线段***,让学生知道可能性的大小还可以用线段上的点表示。引导学生观察某点从线段的左端移到右端引起可能性大小的变化情况,直观地描述可能性的变化趋势。

[这个环节教师着力引导学生归纳总结,使知识系统化。教师在介绍用线段上的点表示可能性大小的同时,结合动态的演示,自然渗透数形结合与极限思想。]

本文发布于:2023-05-22 02:37:19,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/888883.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:教学设计   可能性
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图