七年级数学上册公式

更新时间:2023-05-20 22:56:09 阅读: 评论:0

七年级数学上册公式

公式用格式,用数学符号表示,各个量之间的一定关系(如定律或定理)的式子,能普遍应用于同类事物的方式方法。下面是整理的关于七年级数学上册公式,正师级待遇希望大家认真阅读!

七年级数学上册公式 1

第一章 有理数

1.1 正数与负数

①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

②负数:在以前学过的0以外的数前面加上负我要的生活号“—”的数叫负数。与正数具有相反意义。

③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

1.2 有理数

1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;

(3)有理数:整数和分数统称有理数。

2、数轴(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴;

(2)数轴三要素:原点、正方向、单位长度;

(3)原点:在直线上任取一个点表示数0,这个点叫做原点;

(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)

4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

1.3 有理数的加减法

①有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0

3、一个数同0相加,仍得这个数。

加法的交换律和结合律

②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0;

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把绝对值相除;

0除以任何一个不等于0的数,都得0

1.5 有理数的乘方

1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0

2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10

第二章 整式的加减

2.1 整式

1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.

2、单项式的系数:是指单项式中的数字因数

3、单项数的次数:是指单项式中所有字母的指数的和.

4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项黑糖的功效与作用式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.

5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

6、单项式和多项式统称为整式。

2.2整式的加减

1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关

3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

6、整式加减的一般步骤:

一去、二找、三合

(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项

第三章 一元一次方程

3.1 一元一次方程

1、方程是含有未知数的等式。

2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

注意:判断一个方程是否是一元一次方程要抓住三点:

1)未知数所在的式子是整式(方程是整式方程);

2)化简后方程中只含有一个未知数;

3)经整理后方程中未知数的次数是1.

3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

4、等式的性质: 1)等式两边同时加(或减)同一个数(或式子),结果仍相等;

2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.

3.2 、3.3解一元一次方程

在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:

①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;

②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;

③移项:把含有未知数的项移到方程的一边,其他项都移智能化技术到方程的另一边(移项要变符号) 移项要变号;

④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;

⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。

3.4 实际问题与一元一次方程

一.概念梳理

⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系;②设出未知数(注意单位);③根据相等关系列出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。

⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。

二、思想方法(本单元常用到的数学思想方法小结)

⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.

⑵方程思想:用方程解决实际问题的思想就是方程思想.

⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.

⑷数形结合思想:在列方程解决问题时,借助于线段示意***和***表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.

⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.

三、数学思想方法的学习

1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.

2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和***示分析法等.

3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;

⑵是要判断方程的解是否符合题目中的实际意义.

四、应用(常见等量关系)

行程问题:s=v×t

工程问题:工作总量=工作效率×时间

盈亏问题:利润=售价-成本

利率=利润÷成本×100%

售价=标价×折扣数×10%

储蓄利润问题:利息=本金×利率×时间

本息和=本金+利息

第四章 几何***形初步

4.1 几何***形

1、几何***形:从形形色色的物体外形中得到的***形叫做几何***形。

2、立体***形:这些几何***形的各部分不都在同一个平面内。

3、平面***形:这些几何***形的各部分都在同一个平面内。

4、虽然立体***形与平面***形是两类不同的几何***形,但它们是互相联系的。

立体***形中某些部分是平面***形。

5、三视***:从左面看,从正面看,从上面看

6、展开***:有些立体***形是由一些平面***形围成的,将它们的表面适当剪开,可以展开成平面***形。这样的平面***形称为相应立体***形的展开***。

7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;

⑵点无大小,线、面有曲直;

⑶几何***形都是由点、线、面、体组成的;

⑷点动成线,线动成面,面动成体;

⑸点:是组成几何***形的基本元素。

4.2 直线、射线、线段

1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。

2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。

4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

5、连接两点间的线段的长度,叫做这两点的距离。

6、直线的表示方法:如***的直线可记作直线AB或记作直线m.

(1)用几何语言描述右面的***形,我们可以说:

点P在直线AB外,点A、B都在直线AB上.

(2)如***,点O既在直线m上,又在直线n上,我们称直线

m、n 相交,交点为O.

7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如***就是一条射线,记作射线OM或记作射线a.

注意:射线有一个端点,向一方无限延伸.

8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如***就是一条线段,记作线段AB或记作线段a.

注意:线段有两个端点.

4.3 角

1. 角的定义:有公共端点的两条射线组成的***形叫角。这个公共端点是角的顶点,两条射线为角的两边。如***,角的顶点是O,两边分别是射线OA、OB.

2、角有以下的表示方法:

① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.如上***的角,可以记作∠AOB或∠BOA.

② 用一个大写字母表示.这个字母就是顶点.如上***的角可记作∠O.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.

③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点

处画一弧线,写上希腊字母或数字.如***的两个角,分别记作∠、∠1

2、以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。

1度=60分 1分=60秒 1周角=360度 1平角=180度

3、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。

4、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;

如果两个角的和等于180度(平角),就说这两个叫互为衣着打扮补角,即其中每一个角是另一个角的补角。

5、同角(等角)的补角相等;同角(等角)的余角相等。

6、方位角:一般以正南正北为基准,描述物体运动的方向。

七年级数学上册公式 2

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.过一点有且只有一条直线和已知直线垂直

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

15.定理 三角形两边的和大于第三边

16.推论 三角形两边的差小于第三边

17.三角形内角和定理 三角形三个内角的和等于180°

18.推论1 直角三角形的两个锐角互余

19.推论2 三角形的一个外角等于和它不相邻的两个内角的和

20.推论3 三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25.边边边公理(SSS) 有三边对应相等的两个三角形全等

26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1 在角的平分线上的点到这个角的两边的距离相等

28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33.推论3 等边三角形的各角都相等,并且每一个角都等于60°

34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1 三个角都相等的三角形是等边三角形

36.推论 2 有一个角等于60°的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的摆摊子垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1 关于某条直线对称的两个***形是全等形

43.定理 2 如果两个***形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3 两个***形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理 如果两个***形的对应点连线被同一条直线垂直平分,那么这两个***形关于这条直线对称

46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48.定理 四边形的内角和等于360°

49.四边形的外角和等于360°

50.多边形内角和定理 n边形的内角的企业发展前景和等于(n-2)×180°

51.推论 任意多边的外角和等于360°

52.平行四边形性质定理1 平行四边形的对角相等

53.平行四边形性质定理2 平行四边形的对边相等

54.推论 夹在两条平行线间的平行线段相等

55.平行四边形性质定理3 平行四边形的对角线互相平分

56.平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57.平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58.平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59.平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60.矩形性质定理1 矩形的四个角都是直角

61.矩形性质定理2 矩形的对角线相等

62.矩形判定定理1 有三个角是直角的四边形是矩形

63.矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65.菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66.菱形面积=对角线乘积的一半,即S=(a×b)÷2

67.菱形判定定理1 四边都相等的四边形是菱形

68.菱形判定定理2 对角线互相垂直的平行四边形是菱形

69.正方形性质定理1 正方形的四个角都是直角,四条边都相等

70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71.定理1 关于中心对称的两个***形是全等的

72.定理2 关于中心对称的两个***形,对称点连线都经过对称中心,并且被对称中心平分

73.逆定理 如果两个***形的对应点连线都经过某一点,并且被这一点平分,那么这两个***形关于这一点对称

74.等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75.等腰梯形的两条对角线相等

76.等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77.对角线相等的梯形是等腰梯形

78.平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79.推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80.推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81.三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82.梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

83.(1)比例的基本性质 如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d

84.(2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85.(3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87.推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88.定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的华丽的虚伪三边与原三角形三边对应成比例

90.定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91.相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92.直角三角形被斜边上的高分成的两个直角三角形和原深层清洁面膜三角形相似

93.判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94.判定定理3 三边对应成比例,两三角形相似(SSS)

95.定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96.性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97.性质定理2 相似三角形周长的比等于相似比

98.性质定理3 相似三角形面积的比等于相似比的平方

99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的`余角的正弦值

100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101.圆是定点的距离等于定长的点的集合

102.圆的内部可以看作是圆心的距离小于半径的点的集合

103.圆的外部可以看作是圆心的距离大于半径的点的集合

104.同圆或等圆的半径相等

105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107.到已知角的两边距离相等的点的轨迹,是这个角的平分线

108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109.定理 不在同一直线上的三点确定一个圆。

110.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111.推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

笨狼的故事读后感112.推论2 圆的两条平行弦所夹的弧相等

113.圆是以圆心为对称中心的中心对称***形

114.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116.定理 一条弧所对的圆周角等于它所对的圆心角的一半

117.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119.推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120.定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121.①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123.切线的性质定理 圆的切线垂直于经过切点的半径

124.推论1 经过圆心且垂直于切线的直线必经过切点

125.推论2 经过切点且垂直于切线的直线必经过圆心

126.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127.圆的外切四边形的两组对边的和相等

128.弦切角定理 弦切角等于它所夹的弧对的圆周角

129.推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131.推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132.切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133.推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134.如果两个圆相切,那么切点一定在连心线上

135.①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136.定理 相交两圆的连心线垂直平分两圆的公共弦

137.定理 把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139.正n边形的每个内角都等于(n-2)×180°/n

140.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141.正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142.正三角形面积√3a/4 a表示边长

143.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144.弧长计算公式:L=n兀R/180

145.扇形面积公式:S扇形=n兀R^2/360=LR/2

146.内公切线长= d-(R-r) 外公切线长= d-(R+r)

本文发布于:2023-05-20 22:56:09,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/856373.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:上册   公式   七年级数学
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图