2023年八年级下册湘教版数学教案(精选12篇)

更新时间:2023-05-20 20:42:27 阅读: 评论:0

2023年八年级下册湘教版数学教案(精选12篇)

作为一无名无私奉献的教育工作者,常常要写一份优秀的教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么写教案需要注意哪些问题呢?以下是收集整理的2023年八年级下册湘教版数学教案,欢迎阅读,希望大家能够喜欢。

八年级下册数学教案 篇1

教学目标

1.掌握等边三角形的性质和判定方法。

2.培养分析问题、解决问题的能力。

教学重点:

等边三角形的性质和判定方法。

教学难点:

等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的.有关知识

1.等边三角形是轴对称***形,它有三条对称轴。

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形。

4.有一个角是60°的等腰三角形是等边三角形。

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法。

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE。

②作∠ADE=60°,D、E分别在边AB、AC上。

③过边AB上D点作DE∥BC,交边AC于E点。

2.已知:如右***,P、Q是△ABC的边BC上的两点,并且PB=PQ=QC=AP=AQ,求∠BAC的大小。

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°,又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°。

3.P56页练习1、2

III课堂小结:

等腰三角形和性选树质;等腰三角形的条件

V布置作业:

1.P58页习题12.3第ll题。

2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形,这样的点有多少个?

八年级下册数学教案 篇2

教学目的

1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

2.熟识等边三角形的性质及判定。

2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

教学重点:

等腰三角形的性质及其应用。

教学难点:

简洁的逻辑推理。

教学过程

一、复习巩固

1.叙述等腰三角形的性质,它是怎么得到的?

等腰三角形的两个底角相等,也可以简称&ld烈士有哪些quo;等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。

等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。

2.若等腰三角形的两边长为3和4,则其周长为多少?

二、新课

在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

等边三角形具有什么性质呢?

1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

2.你能否用已知的知识,通过推理得到你的猜想是正确的?

等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

3.上面的条件和结论如何叙述?

等边三角形的各角都相等,并且每一个角都等于60°。

等边三角形是轴对称***形吗?如果是,有几条对称轴?

等边三角形也称为正三角形。

在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的'顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

问题2:求∠1是否还有其它方法?

三、练习巩固

1.判断下列命题,对的打“√”,错的打“×”。

a.等腰三角形的角平分线,中线和高互相重合()

b.有一个角是60°的等腰三角形,其它两个内角也为60°()

2.在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

3.P54练习1、2。

四、小结

由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

五、作业:

1.课本P57第7,9题。

2、补充:如***(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。

八年级下册数学教案读书感想怎么写 篇3

一、学习目标

1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的.形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1.请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2.公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)博美多少钱2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、课堂练习

教科书练习。

六、作业

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

八年级下册数学教案 篇4

教学目标:

1、知道负整数指数幂=(a≠0,n是正整数)、

2、掌握整数指数幂的运算性质、

3、会用科学计数法表示小于1的数、

教学重点:

掌握整数指数幂的运算性质。

难点:

会用科学计数法表示小于1的数。

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、

教学过程:

一、课堂引入

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am,an=am+n(m,n是整数)这条性质也是成立的.。

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示。

八年级下册数学教案 篇5

一、教材分析

1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是***最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析

1、知识目标:掌握最短路径概念、能够求解最短路径。

2、能力目标:

(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

(2)通过旅游景点线路选择问题的解决,培养学生的***思考、分析问题、解决问题的能力。

3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

三、教法分析

课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于***这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

四、学法指导

1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析

(一)课前复习(3~5分钟)回顾“路径”的'概念,为引出“最短路径”做铺垫。

教学方法及注意事项:

(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

(2)提示学生“温故而知新”,养成良好的学习习惯。

(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

(三)讲授新课(25~30分钟)

求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

(1)将实际问题抽象成***中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

①主要采用讲授法,将实际问题用***形表示出来。语言描述转为什么新车油耗高换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线fatten路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画***。

②注意示范画***只进行一部分,让学生***思考、自主完成余下部分的转化。

③及时总结,原型抽象(景点作为***的结点,景点间的线路作为***的边,旅途费用作为边的权值),将案例求解问题抽象成求***中某一结点到其他各结点的最短路径问题。

④利用多媒体课件,向学生展示一张带权有向***,并略作解释,为后续教学做准备。

教学方法及注意事项:

①启发式教学,如何实现按路径长度递增产生最短路径?

②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生***思考完成。

(四)课堂小结(3~5分钟)

1、明确本节课重点

2、提示学生,这种方式形成的***又可以解决哪类实际问题呢?

(五)布置作业

书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

六、教学特色

以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

八年级下册数学教案 篇6

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2.提问:

①说说你是怎样计算的;

②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以xx,再把所得的商xx

2.本质:把多项式除以单项式转化成xx

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的.指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

E、多项式除以单项式法则。

八年级下册数学教案 篇7

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的.推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)2001×1999

(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

八年级下册数学教案 篇8

学习目标(学习重点):

1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

2.运用菱形的识别方法进行有关推理。

补充例题:

例1.如***,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明你的理由。

例2.如***,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,

四边形AFCE是菱形吗?说明理由。

例3.如***,ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点

(1)试说明四边形AECG是平行四边形;

(2)若AB=4cm,BC=3cm,求线段EF的长;

(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形。

课后帮助:

一、填空题

1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

2.如***,D、E、F分别是△ABC的边BC、CA、AB上的点,

且DE∥BA,DF∥CA

(1)要使四边形AFDE是菱形,则要增加条件______________________

(2)要使四边形AFDE是矩形,则要增加条件______________________

二、解答题

1.如***,在□ABCD中,若2,判断□ABCD是矩形还是菱形?并说明理由。

2.如***,平行四边形ABCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.

(1)AC,BD互相垂直吗?为什么?

(2)四边形ABCD是菱形吗?

3.如***,在□ABCD中,已知ADAB,ABC的.平分线交AD于E,EF∥AB交BC于F,试问:四边形ABFE是菱形吗?请说明理由。

4.如***,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

⑴求证:ABF≌

⑵若将折叠的***形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由。

八年级下册数学教案 篇9

教学目标:

1、经历数据离散程度的探索过程

2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:

会计算某些数据的极差、标准差和方差。

教学难点:

理解数据离散程度与三个差之间的关系。

教学准备:

计算器,投影片等

教学过程:

一、创设情境

1、投影课本P138引例。

(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的'20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)

2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究

如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如***(投影课本159页***)

问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?

2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:

方差:各个数据与平均数之差的平方的平均数,记作s2

设有一组数据:x1,x2,x3,xn,其平均数为

则s2=xx,

而s=称为该数据的标准差(既方差的算术平方根)

从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做

你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?

(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)

五、巩固练习:课本第172页随堂练习

六、课堂小结:

1、怎样刻画一组数据的离散程度?

2、怎样求方差和标准差?

七、布置作业:习题5.5第1、2题。

八年级下册数学教案 篇10

教学目标:

知识目标:

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

能力目标:

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感目标:

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:

掌握函数概念。

判断两个变量之间的关系是否可看作函数。

能把实际问题抽象概括为函数问题。

教学难点:

理解函数的概念。

能把实际问题抽象概括为函数问题。

教学过程设计:

一、创设问题情境,导入新课

『师』:同学们,你们看下***上面那个像车轮状的物体是什么?

『生』:摩天轮。

『师』:你们坐过吗?

『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?

『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。

『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。

『师』:对于给定的时间t,相应的高度h确定吗?

『生』:确定。

『师』:在这个问题中,我们研究的对象有几个?分别是什么?

『生』:研究的对象有两个,是时间t和高度h。

『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的.问题。

二、新课学习

做一做

(1)瓶子或罐子盒等圆柱形的物体,常常如下***那样堆放,随着层数的增加,物体的总数是如何变化的?

填写下表:

层数n12345…物体总数y1361015…

『师』:在这个问题中的变量有几个?分别师什么?

『生』:变量有两个,是层数与圆圈总数。

(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)

①计算当fenbie为50,60,100时,相应的滑行距离S是多少?

②给定一个V值,你能求出相应的S值吗?

解:略

议一议

『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?

『生』:相同点是:这三个问题中都研究了两个变量。

不同点是:在第一个问题中,是以***象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。

『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。

函数的概念

在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。

一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的四年级好词好句大全摘抄函数,其中x是自变量,y是因变量。

三、随堂练习

书P152页随堂练习1、2、3

四、本课小结

初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。

在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

函数的三种表达式:

(1)***象;

(2)表格;

(3)关系式。

五、探究活动

为了加强公民的节水意识,某市太空幻想制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?

(答案:Y=1.8x-6或)

六、课后作业

习题6.1

八年级下册数学教案 篇11

一、教学目标

①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生***思考、集体协作的能力。

②理解整式除法的算理,发展有条理的思考及表达能力。

二、教学重点与难点

重点:整式除法的运算法则及其运用。

难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

三、教学准备

卡片及多媒体课件。

四、教学设计

(一)情境引入

教科书第161页问题:木星的质量约为1.90×1024吨,地球的质量约为5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?陈凤山

重点研究算式(1.90×1024)÷(5.98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的'联系,同时再次经历感受较大数据的过程。

(二)探究新知

(1)计算(1.90×1024)÷(5.98×1021),说说你计算的根据是什么?

(2)你能利用(1)中的方法计算下列各式吗?

8a3÷2a;6x3y÷3xy;12a3b2x3÷酸菜龙利鱼3ab2。

(3)你能根据(2)说说单项式除以单项式的运算法则吗?

注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

(三)归纳法则

单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

(四)应用新知

例2计算:

(1)28x4y2÷7x3y;

(2)—5a5b3c÷15a4b。

首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

巩固新知教科书第162页练习1及练习2。

学生自己尝试完成计算题,同桌交流。

注:在***解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

(五)作业

1、必做题:教科书第164页习题15.3第1题;第2题。

2、选做题:教科书第164页习题15.3第8题

八年级下册数学教案 篇12

教学目标:

1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

4、能利和计算器求一组数据的算术平均数。

教学重点:

体会平均数、中位数、众数在具体情境中的意义和应用。

教学难点:

对于平均数、中位数、众数在不同情境中的应用。

教学方法:

归纳教学法。

教学过程:

一、知识回顾与思考

1、平均数、中位数、众数的概念及举例。

一般地对于n个数x1……xn把(x1+x2+…xn)叫做这n个数的算术平均数,简称平均数。

如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

众数就是一组数据中出现次数最多的那个数据。

如3,2,3,5,3,4中3是众数。

2、平均数、中位数和众数的特征:

(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的'信息。

(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

3、算术平均数和加权平均数有什么区别和联系:

算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

4、利用计算器求一组数据的平均数。

利用科学计算器求平均数的方法计算平均数。

二、例题讲解:

某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

三、课堂练习:

复习题A组

四、小结:

1、掌握平均数、中位数与众数的概念及计算。

2、理解算术平均数与加权平均数的联系与区别。

五、作业:

复习题B组、C组(选做)

本文发布于:2023-05-20 20:42:27,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/853769.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图