初一下学期平行线与相交线知识点整理

更新时间:2023-05-20 16:36:02 阅读: 评论:0

初一下学期平行线与相交线知识点整理

知识点是网络课程中信息传递的基本单元,研究知识点的表示与关联对提高网络课程的学习导航具有重要的作用。比如:&ld杜牧是什么朝代的人quo;今天我学了如何演讲”这显然不是一个知识点,这是一个知识面,别人看了也不知道你今天学了什么。以下是为大家收集的初一下学期平行线与相交线知识点整理,欢迎大家借鉴与参考,假音怎么唱出来希望对大家有所帮助!

一、互余、互补、对顶角

1、相加等于少年闰土说课稿90°的两个角称这两个角互余。性胡寿根质:同角(或等角)的余角相等。

2、相加等于180°的两个角称这两个角互补。网站申请性质:同角(或等角)的补角相等。

3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。对顶角的性质:对顶角相等。

4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。(相邻且互补)

二、三线八角:两直线被第三条直线所截

①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。

②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。

③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。

三、平行线的判定

①同位角相等

②内错角相等两直线平行

③同旁内角互补

四、平行线的性质

①两直线平行,同位角相等。

②两直线平行,内错角相等。

③两直线平行,同旁内角互补。

五、尺规作***(用圆规和直尺作***)

①作一条线段等于已知线段。

②作一个角等于已知角。

第三章三角形

牢固近义词

一、认识三角形

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的***形。

2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边。

(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)

3、三角形的内角和是180°;直角三角形的两锐角互余。

锐角三角形(三个角都是锐角)

4、三角形按角分类直角三角形(有一个角是直角)

钝角三角形(有一个角是钝角)

5、三角形的特殊线段:

a)三角形的中线:连结顶点与对边中点的线清字成语段。(分成的两个三角形面积相等)

b)三角形的'角平分线:内角平分线与对边的交点到内角所在的顶点的线段。

c)三角形的高:顶点到对边的垂线段。(每一种三角形的作***)

二、全等三角形:

1、全等三角形:能够重合的两个三角形。

2、全等三角形的性质:全等三角形的对应边、对应角相等。

3、全等三角形的判定:

判定方法

内容

简称

边边边

三边对应相等的两个三角形全等

SSS

边角边

两边与这两边的夹角对应相等的两个三角形全等

SAS

角边角

两角与这两角的夹边对应相等的两个三角形全等

ASA

角角边湄公河行动豆瓣

两角与其中一个角的对边对应相等的两个三角形全等

AAS

斜边直角边

斜边与一条直角边对应相等的两个直角三角形全等

HL

注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA

两条边与其中一条边的对角对应相等的两个三角形不能判定两个三角三角形全等。SSA

4、全等三角形的证明思路:

条件

下一步的思路

运用的判定方法

已经两边对应相等

找它们的夹角

SAS

找第三边

SSS

已经两角对应相等

找它们的夹边

ASA

找其中一个角的对边

AAS

已经一角一边

找另一个角

ASA或AAS

找另一边

SAS

5、三角形具有稳定性。

三、作三角形

1、已经三边作三角形。

2、已经两边与它们的夹角作三角形。

3、已经两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况)。

4cl1024社区、已经斜边与一条直角边作北京残奥会直角三角形。

本文发布于:2023-05-20 16:36:02,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/849132.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:知识点   平行线   学期
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图