分类号:密级:
U D C:学号:416523217434
责任方南昌大学专业学位硕士研究生
学位论文
前列腺癌骨转移的风险预测模型
A risk prediction model for bone metastasis in prostate cancer
施良
培养单位(院、系):南昌大学第一附属医院
指导教师姓名、职称:陈卫民教授、主任医师
专业学位种类:临床医学硕士
放的反义词是什么专业领域名称:外科学(泌尿外科)
论文答辩日期:2020年7月
答辩委员会主席:陈和平
评阅人:盲审
盲审
聆听世界社区食堂运营方案2020年7月
摘要
车的图片大全摘要
目的:
通过分析前列腺癌(PCa)骨转移(BM)可能的预测因素,并建立预测模型,早期预测前列腺癌骨转移的风险,评估骨显像的必要性,从而使低风险的前列腺癌患者安全地省略单光子发射计算机断层(SPECT)骨显像。
方法:
回顾性分析298例初诊前列腺癌患者的临床资料,将年龄、总前列腺特异性抗原(tPSA)、游离前列腺特异性抗原(fPSA)、fPSA/tPSA、前列腺体积(PV)、碱性磷酸酶(ALP)、血清钙和血清磷、临床肿瘤分期(cTx)、Gleason评分(GS)进行单因素和多因素Logistic回归分析。确定前列腺癌骨转移的预测因素,建立风险预测模型。用33例数据验证该预测模型。
结果:
田朴
单因素分析表明,骨转移阳性组与阴性组之间tPSA、fPSA、ALP、cTx、GS均有显著性差异。多因素
logistic回归分析表明,两组间GS、cTx、tPSA、ALP有显著性差异,可作为前列腺癌骨转移的独立预测因素。四个独立预测因素中,tPSA的曲线下面积(AUC)最大(0.783),对前列腺癌骨转移具有最优的预测效果。而将四个因素建立预测模型时,其AUC(0.844)大于所有单个指标,表现出最佳的预测效能。当四个预测因素均按最佳界值取阴性值(tPSA﹤80.77ng/ml,ALP﹤155.5U/L,cTx﹤3,GS﹤4级/8分)时,共筛选出102例患者,其中6例患者骨转移阳性,96例骨转移阴性,即假阴性率为5.9%(6/102),但能避免32.2%(96/298)的患者进行不必要的骨显像。将33例外部验证数据代入预测模型的列线图,得出预测模型的敏感性为72.7%(8/11),特异性为81.8%(18/22),与建立模型时的结果72.9%和80.6%基本吻合,证明模型具有较高的准确性和稳定性。
结论:
1、GS、cTx、tPSA、ALP是前列腺癌骨转移的独立预测因素;
2、该模型有较好的预测效能,有助于临床工作中预测初诊前列腺癌骨转移的风险,评估骨显像的必要性;
II
摘要
3、通过外部数据证明预测模型具有较高的准确性和稳定性。关键词:前列腺癌;骨转移;预测模型;SPECT;骨显像
III
Abstract
ABSTRACT
Objective:
By analyzing the possible predictors of bone metastasis in prostate cancer and establishing a prediction model,the risk of bone metastasis of prostate cancer can be predicted early and the necessity of bone scintigraphy can be evaluated,so that low-risk patients with prostate cancer can safely omit bone scintigraphy by Single photon emission computed tomography(SPECT).个人评价材料
Methods:
Retrospectively analyze the clinical data of298patients with prostate cancer (PCa),perform univariate and multivariate logistic regression analysis of the age, total prostate specific antigen(tPSA),free pro
state specific antigen(fPSA), fPSA/tPSA,prostatic volume(PV),alkaline phosphata(ALP),rum calcium and phosphorus,clinical tumor stage(cTx),Gleason score(GS).And then the predictors of bone metastasis in prostate cancer were defiined and a prediction model was established.The prediction model was validated with33data.
Results:
投篮方式Univariate analysis showed that there were significant differences in tPSA,fPSA, ALP,cTx and GS between the positive group and the negative group.Multivariate logistic regression analysis showed that there were significant differences in GS,cTx, tPSA and ALP between the two groups,which could be ud as independent predictors of bone metastasis of prostate cancer.Among the four independent predictors,the area under the curve(AUC)of tPSA is the largest(0.783),which had the best prediction efficiency for bone metastasis of prostate cancer.When four factors were ud to build the prediction model,the AUC(0.844)was larger than all the individual indicators,showing the best prediction efficiency.When the four predictors were all negative according to the optimal threshold values(tPSA<80.77ng/ml,ALP <155.5u/L,cTx<3,GS<grade4/8),102patients were involved,among which6
IV