弹性力学发展简史
涅盘
提倡者弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础。
启 蒙 时 代
牌子包包1600-1700年关于工资总额组成的规定
弹性力学植根于早期的数学和物理研究。自牛顿时代以来才逐渐从其中得以分离。最初的动机是为了能够理解断裂行为并进行有效的控制。Leonard Da Vinci 曾在他的笔记中记载了测试绳索拉伸强度的一种实验,据说这或许对悬挂他的画作至关重要。由于绳索中的缺陷分布,他认识到强度对长度可能的依赖关系。
Leonard Da Vinci 及其机械设计
经典力学有时候被称为“伽利略-牛顿”力学。原因很清楚,伽利略提出了惯性原理,牛顿将其扩展为牛顿三定律。伽利略的经典著作《两种新科学的对话》是力学发展中的一个里程碑。
伽利略
长春占地面积
除了家喻户晓的惯性原理外,其中详细讨论了固体的变形和强度。他研究杆单向拉伸断裂时的载荷,得出了断裂载荷与杆长无关的结论,这与达芬奇基于缺陷沿长度统计分布的认识不同。在一个科学即是天文学的时代,伽利略在材料强度方面的研究和探索是非同寻常的。关于伽利略试验方法的历史记载可参见S.P.Timoshenko(1878-1972)的著作《材料力学史》。
伽利略的拉伸试验和弯曲试验示意图
最长单词伽利略梁横截面为矩形,其长度L,一端固支在墙中,另一端悬挂一桶水或其他形式的重物。伽利略对这种悬臂梁的结构进行了分析。这是历史上首次把梁作为变形体来进行研究。分析结果正确地给出了梁的强度和几何尺寸的依赖关系,例如长度和截面抗弯刚度。然而伽利略并未给出正确的轴向应力沿着高度分布的关系,他认为轴向应力在下底面处为零,而非现在我们认识到的中性层处。
海南省面积多大
弹性关系的感念首先是英国科学家Robert.Hooker提出。胡克定律发现于1660年,发表时已经是1678年。在他的论文《论弹簧》中,原始的弹性关系写为拉丁文的字谜形式“ceiiiosssttuu”,重新排列后为关于珍惜时间的名言警句
“ut tensio sic vis”,也就是现在的弹性胡克定律。中文意思是“拉力与伸长成正比”。胡克定律建立了线弹性的概念,但尚未表达为应力和应变的形式。
Robert.Hooker的实验
大师耕耘
1700-1880年
早期弹性力学的发展记录了大师们的足迹。伯努利Bernoulli兄弟引入了应力和应变的概念。1705年,Jacobi Bernoulli (瑞士数学家和力学家)在他生平的最后一篇论文中指出,要正确描述材料纤维在拉伸
下的变形,就必须给出单位面积上的作用力,即应力(Stress),单位长度的伸长,即应变(Strain)。
1727年,Leonhard Euler (瑞士数学家与力学家,Jacobi Bernoulli 的弟弟,John Bernoulli的学生)给出了应力与应变之间的关系,即:
1807年,Thomas Young发展了一个类似的概念,因此现在常常称E杨氏模量。
1774年,Leonhard Euler分析了压杆失稳的问题。可以证明杆件的挠度遵循下面的方程:
其中,C'是Bernoulli梁的刚度系数,P是压杆载荷,x,y分别是沿杆长的坐标和杆的挠度。
Euler得到的挠度曲线
作为表明弹性力学历史地位重要性的经典例子,压杆失稳的弹性力学分析出发了两个重要的数学概念。
其一是“变分原理”,Euler正是利用这种方法导出控制方程,其二是“分岔”的概念,它是非线性分析的中心内容。Euler得到了上述方程的解答,文献中称为“elastica”。结果表明,杆件在不同的压缩状态,欧拉杆会发生翻转,变为折叠的受拉杆。
Euler逝世后不久,许多天才科学家齐聚法国,他们对弹性力学不懈的研究使得这一领域在法国科学院中异常活跃,其中几位科学巨匠有Navier,Poisson,Coulomb,Cauchy,Saint Venant。