上肢协调运动中肌间耦合特性分析方法研究

更新时间:2023-05-27 12:45:15 阅读: 评论:0

摘要
摘要
留党察看运动控制系统具有高度复杂的、非线性的特点,上肢协调运动作为生活自理的必要条件,是由中枢神经运动系统控制、与上肢运动相关肌肉群协调收缩、相互作用的结果,运动过程中产生的肌电信号(Electromyography,EMG)能够反映运动控制系统的响应信息。肌肉间的相互作用体现在肌间耦合关系,反映了神经系统对运动肌肉的控制支配作用,肌间耦合强度体现了肌肉的激活性和协调性,进而评价运动系统功能。因此,上肢协调运动中肌间耦合特性及其变化规律是探索肌肉协调整合及神经运动系统的控制协调机制的热点关注问题。
首先,阐述了肌电信号的产生机制和特点,并对肌间耦合分析方法研究现状及其应用现状进行综述,并结合肌间耦合关系的特点和现有耦合分析方法无法进行多尺度分析和定量描述肌间非线性耦合关系的问题,提出了本文的主要研究内容:从肌电信号的多尺度和非线性的角度出发,基于传统相干性分析方法对肌间耦合特性分析方法进行改进和拓展。
好梦留人睡
其次,针对肌间耦合关系存在特征频段特性,而传统相干分析无法刻画肌电信号的多尺度特性,构建基于多尺度同步分解的MEMD-相干性特征频段肌间耦合分析模型,对多通道肌电信号进行同步分解,获得尺度相同、频率对应的特征频段信息,并对特征频段的肌电信号进行相干性分析,然后将该方法应用到
健康被试上肢不同静态握力下的肌间耦合特性分析中,结果表明该方法能够为肌间耦合多尺度特性分析方法的研究提供新思路。泰山挑夫
再次,针对运动控制系统表现出的肌间耦合作用存在非线性特点,构建基于小波包-n:m相干性的肌间交叉频率耦合分析模型,首先获取肌电信号在不同频率点的特征信息,通过对不同频率比值下的特征信号进行肌间n:m交叉频率相干性分析来刻画肌间的非线性耦合关系,并将其应用到健康被试恒定握力维持下肘屈伸过程,分析结果表明该方法能够描述特定运动下肌间交叉频率非线性耦合特性关系。
最后,将本文提出的肌间耦合分析方法应用到中风患者的患侧上肢协调运动过程肌间耦合分析的研究中,并对比分析中风患者与健康被试之间的肌间耦合差异,结果表明,中风患者的肌间耦合特性在一定程度上存在缺失,研究结果从肌间耦合角度定量分析了患者的运动功能状态,对患者康复训练策略的制定提供理论依据和
燕山大学工学硕士学位论文
参考,同时验证了本文所提出方法的有效性。
关键词:上肢协调运动;肌电信号;肌间耦合;MEMD-相干性分析;小波包-n:m相干性
Abstract
Abstract
Human motor control system is highly complex and non-linear.The coordinated movement of upper limbs,as a necessary condition for lf-living principle in daily life,is the result of coordinated contraction and interaction between the muscles related to movement controlled by the central nervous system.Electromyography(EMG)signal generated during exerci reprents the respon information of the motor control system. The relationship between different muscles reflects in the intermuscular coupling interaction,which reflects the control and domination information of the nervous system to the motor muscle.The intermuscular coupling strength reflects the activation and coordination of the muscles,and then evaluates the function of the motor control system. Therefore,the characteristics of intermuscular coupling and its changing regularity are the hot issues to explore the mechanism of the coordination and integration of the muscle and neural motor system.
Firstly,this paper elaborated generation mechanism and characteristics of EMG signal,and summarized the rearch status and application progress of intermuscular coupling analysis algorithms.Considering the characteristics of the intermuscular coupling relationship and the deficiencies of the existing analysis methods,which can’t synchronize multiscale decomposition and
can not describe the nonlinear coupling relationship between muscles,the main rearch contents of this paper was propod. From the point of multiscale and non-linear characteristics of EMG signal,the analysis method of intermuscular coupling characteristics was improved and expanded bad on the traditional coherence analysis.挂面一般煮几分钟
Secondly,aiming at the frequency band characteristics of the intermuscular coupling relationship and the traditional coherence analysis can not describe the multiscale characteristics of EMG signal,a multiscale synchronous decomposition model of the intermuscular coupling analysis bad on multivariate empirical mode decomposition-coherence was constructed.The multichannel EMG signals were decompod synchronously to obtain the characteristic frequency band information of the
燕山大学工学硕士学位论文
红楼倚梦麻辣羊肉same scale and frequency,and the coherence of the characteristic frequency band was divided.This method was applied to analyze the intermuscular coupling characteristics of healthy subjects under different static grip forces of upper limbs.The results showed that this method can provide a new idea for the study on multiscale characteristics of intermuscular coupling.
Thirdly,aiming at the nonlinear characteristics of the motion control system reflects in the intermuscular coupling,the intermuscular cross-frequency coupling analysis model bad on wavelet packet-n:m coherence was constructed.The information of the EMG signal at different frequency points was obtained,and the nonlinear coupling relationship between muscles was described by the n:m cross-frequency coherence analysis of the characteristic signal at different frequency ratios.This method was applied to elbow flexion and extension with constant grip force of healthy subjects.The results showed that the method can quantitatively describe the cross-frequency nonlinear coupling characteristics of EMG signals under specific motor.
Finally,the coupling analysis method propod in this paper was applied to the study of intermuscular coupling analysis in the process of upper limb coordinated motion of stroke patients,and the differences of intermuscular coupling between stroke patients and healthy subjects are compared and analyzed.The results showed that there was a certain degree of lack of intermuscular coupling in stroke patients.The rearch results quantitatively analyzed the motor function of patients from the angle of intermuscular coupling,which had theoretical basis and reference for the formulation of rehabilitation training strategies for patients,and at the same time verified the effectiveness of the rearch methods in this paper.
Keywords:Upper Limb Coordinated Motion;EMG;Intermuscular Coupling;
MEMD-Coherence;Wavelet Packet-n:m Coherence
目录
目录
摘要.....................................................................................................................................III 目录..................................................................................................................................V 第1章绪论 (1)
1.1课题研究背景及意义 (1)
1.2肌电信号的产生机制及其特点 (2)
1.2.1肌电信号的产生机制 (2)
1.2.2肌电信号的特点 (3)
1.3肌电信号耦合特性分析研究现状 (4)
1.3.1肌电信号间的耦合现象 (4)
1.3.2肌间耦合分析方法研究现状 (5)
1.3.3肌间耦合分析应用现状 (7)梦到蛇缠身
1.4本文主要研究内容 (8)
第2章肌电信号预处理及肌间耦合分析方法 (11)
2.1引言 (11)
2.2肌电信号的采集及预处理方法 (11)
2.2.1肌电信号采集 (11)
2.2.2肌电信号的预处理 (12)
2.3肌间耦合特性分析方法 (18)
2.3.1时域耦合分析 (19)
2.3.2频域耦合分析 (20)
2.3.3时频域耦合分析 (22)
2.4本章小结 (24)
第3章基于MEMD-相干性的肌间特定频段耦合分析方法研究 (25)
3.1引言 (25)
3.2基于MEMD-相干性的肌间耦合分析方法 (25)描写新年的诗句
3.2.1MEMD分解 (25)

本文发布于:2023-05-27 12:45:15,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/792313.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:耦合   肌间   运动   分析
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图