1.某一市场需求函数如下:
121000.5()p q q =−+
在该市场上只有两家企业,它们各自的成本函数为
21125,0.5,c q c q ==22
(1)在斯塔克尔博格模型中,谁会成为领导者?谁会成为追随者?
(2)该市场最后的结局是什么?为什么?
2.(价格竞争模型)有两个寡头企业,它们的利润函数分别是:
221122221
()()p ap c p p b p ππ=−−++=−−+
12,p p 是两个企业采取的价格,a,b,c 是常数。 (1) 求企业1先决策时的均衡。党员个人年度总结
(2) 求企业2先决策时的均衡。
(3) 是否存在某些参数值(a,b,c)使得每个企业都希望自己先决策?
3.对某商品,市场需求曲线为p=100-2Q,生产该产品的任何厂商的总成本函数为TC(q)=4q.
(1)假设市场上有两个古诺厂商A,B,这两个厂商的反应线分别是什么?求解古诺均衡时的产量。
(2)假设市场上有两个厂商,一个是领导者A,一个是追随者B,求解斯坦克尔博格均衡。
4.斯密与约翰玩数字游戏。每一个人选择1、2或者3。如果数字相同,约翰支付给斯密3美元。如果数字不同,斯密支付给约翰1美元。
(1)描述这个对策的报酬矩阵,并且证明没有纳什均衡策略组合。
(2)如果每一个局中人以1/3的概率选择每一个数字,证明这个对策的混合策略确实有一纳什均衡。这个对策的值是什么?
5.在下表所示的策略型博弈中,找出占优均衡。
L N Q
U 4,3 5,1 6,2
M 2,1 8,4 3,6
D 3,0 9,6 2,8
6.模型化下述划拳博弈:两个朋友在一起划拳喝酒,每个人有四个纯战略:杆子,老虎,鸡和虫子。输赢规则是:杆子降老虎,老虎降鸡,鸡降虫子,虫子降杠子。两个人同时出令。如果一个打败另一个,赢者的效用为1,输者的效用为-1;否则,效用均为。写出这个博弈的收益矩阵。这个博弈有纯策略纳什均衡吗?计算出混合策略纳什均衡。
7.巧克力市场上有两个厂商,各自都可以选择市场的高端(高质量),还是低端(低质量)。相应的利润由如下得益矩阵给出:
厂商2
低质量 高质量 低质量 -20,-30 900,600
厂商1 高质量 100,800 50,50
如果有的话,哪些结果是纳什均衡?
如果各企业的经营者都是保守的,并都采用最大最小化策略,结果如何?
合作的结果是什么?
哪个厂商从合作的结果中得到的好处最多?哪个厂商要说服另一个厂商需要给另一个厂商多少好处?外国经典歌曲
8.考虑下列策略型博弈:
B
L N Q
U 1,-2 -2,1 0,0 A
M -2,1 1,-2 0,0
D 0,0 0,0 1,1
请问,该博弈里有几个均衡?为什么?
9.在下列策略型博弈里,什么是占优解?什么是纯策略纳什均衡解?
游戏者2
L N Q
U 2,0 1,1 4,2 游戏者1断桥残雪歌词
M 3,4 1,2 2,3
D 1,3 0,2 3,0
10.你是一个相同产品的双寡头厂商之一,你和你的竞争者生产的边际成本都是零 。而市场的需求函数是p=30-Q
(1)设你们只有一次博弈,而且必须同时宣布产量,你会选择生产多少?你期望的利润是多少?为什么?
(2)若你必须先宣布你的产量,你会生产多少?你认为你的竞争者会生产多少?你预计你的利润是多少?先宣布时一种优势还是劣势?为了得到先宣布或者后宣布的选择权,你愿意付出多少?
(3)现在假设你正和同一个对手进行十次系列博弈中的第一次,每次都同时宣布产量,你想要你十次利润的总和(不考虑贴现)最大化,在第一次你将生产多少?你期望第十次生产多少?第九次呢?为什么?
读书故事
11.考虑下图所示的房地产开发博弈的扩展型表述:
开发商A
开发不开发
开发商B 开发商B
开发不开发开发不开发
(-3,-3)(1,0)(0,1)(0,0)
(1)写出这个博弈的策略式表述。
(2)求出纯策略纳什均衡。
(3)求出子博弈完美纳什均衡。
12.两家电视台竞争周末黄金时段晚8点到10点的收视率,可选择较好的节目放在前面还是后面。他们决策的不同组合导致收视率如下:
电视台1
前面 后面
电视台2
前面 18,18 23,20
后面 4,23 16,16 (1)如果两家同时决策,有纳什均衡吗?
(2)如果双方采用规避风险的策略,均衡的结果是什么?
(3)如果电视台1先选择,结果是什么?若电视台2先选择呢?
(4)如果两家谈判合作,电视台1许诺将好节目放在后面,这许诺可信吗?结果可能是什么?
13.X公司垄断了震动充水床垫的生产。这种床垫的生产是相对缺乏弹性的——当价格为每床1000元时,销售25000床;当价格为每床600元,销售30000床。生产充水床垫的惟一成本是最初的建厂成本。X公司已经投资建设生产能力达到25000床的工厂,滞留成本与定价决策无关。肺热怎么调理
(1)假设进入这个行业能够保证得到一半市场,但是要投资10000000元建厂。构造X公司策略(p=1000或者p=600)反对进入策略(进入或者不进入)的报酬矩阵。这个对策有纳什均衡吗?
(2)假设X公司投资5000000元将现有工厂的生产能力扩大到生产40000床充水床垫。阻止竞争对手的进入是有利可图的策略吗 ?
14.下表给出了一个两人的同时博弈,若这个同时博弈进行两次,第二次博弈是在知道第一次博弈的前提下进行的,并且不存在贴现因子。收益(4,4)能够在纯策略的子博弈完备的纳什均衡中作为第一次博弈的结果吗?如果它能够,给出策略组合;如果不能够,请说明为什么不能?
15.假定有几位企业家,每位企业家都有一个投资项目。每个项目的回报R,是服从于[a,b ]上的均匀分布的,这里a=100,b=150。每个项目的成本为100,而所有的企业家都没有自由资金。若银行向企业家贷款,银行是委托人,企业家则成了代理人。银行为了观察与监督企业家对资金的使用情况,则要在每一项目上花费5(观察的成本)。问:
(1)项目的期望毛回报E(R)是多少?
(2)如果银行需要以25%为利率去吸引存款,上述项目能从银行贷到资金吗?请说明你的理由。
七夕又称(3)如银行以10%的利率去吸引存款,又要监管所有项目,则银行从项目的回报R中要分多高的百分比才能使银行收支相抵。
(4)(3)问中的分享合约在有监督成本的条件下能产生纳什均衡吗?为什么?
16.This part contains three questions.
(1) For each of the following statements, provide a proof if it is true or a counter-example if it is not.
(a)In a static game of complete information, a pure strategy Nash equilibrium does not contain any weakly dominated strategy.
(b)In a game tree reprenting a finite dynamic game of complete and perfect information, the number of subgames (including the dynamic game) is equal to the number of nonterminal nodes.
(2)Consider the following game.
Player 2 L (p21) C (p22) R (p23) T (p11)
4 , 4 0 , 0 0 , 0 M (p12) 0 , 0 1 , 2 0 , 1
Player 1 B (p13) 0 , 0 0 , 2 3 , 3
(a )Find all the pure strategy Nash equilibria.
(b )Find ONE mixed strategy Nash equilibrium (that is not a pure strategy Nash equilibrium)
(c )Consider a two-stage repeated game in which the above simultaneous-move game is played twice. The outcome of the first play is obrved before the next play begins. The payoff for the entire game is simply the sum of the payoffs from the two stages. That is, the discount factor 1=δ. Find one subgame perfect Nash equilibrium of the repeated game in which the outcome of the first stage is (B, C).
(d )Now suppo that both players discount the payoffs from stage 2 by the discount factor δ, where 10<<δ. Determine the range of δ such that the subgame perfect Nash equilibrium you found in c) is still a subgame perfect Nash equilibrium.
(3)Consider an infinitely repeated game in which the following simultaneous move game is repeated infinitely.自转怎么写
Player 2 L2 R2
L1 0 , 0 4 , -1
Player 1 R1 -1 , 4 3 , 3
(a )Determine the range of the discount factor δ such that the infinitely repeated game has a Nash equilibrium in which player i plays the following trigger strategy: At stage 1, player i plays Ri
At stage t, if the outcome of every of all t–1 previous stages is (R1, R2) then player i plays Ri; otherwi, player i plays Li.
(b )Argue that the Nash equilibrium in a) is subgame prefect.
17. Consider the following dynamic game. This is a complicated game tree. Note that there are three players in this game. Player 1's payoff is the first number in each triple. Player 2's payoff is the cond number in each triple. Player 3's payoff is third number in each triple.
Player 1
1 (a )Write down all the strategies for player 1.
(b) How many information ts does player 3 have?
(c)Construct the normal-form for the subgame following D as indicated in the tree. Note that this sub
game is played by player 2 and 3. You can ignore player 1's payoffs. Find all pure strategy Nash equilibria in your normal-form.
(d) U backward induction to find all the subgame perfect Nash equilibria. Write down clearly the subgame perfect Nash equilibria you found.
18. This part contains one question.
Only four firms, 1, 2, 3 and 4, produce a homogeneous product in a market. Let denote the quantity produced by firm i, for i=1, 2, 3, 4. The market price is
i q 4321 where ,)(q q q q Q Q a Q P +++=−= Each firm has a constant marginal cost of production, c, and no fixed cost. That is,
firm i's cost function is . The timing is as follows.
i i i cq q C =)(• Firm 1 and firm 2 simultaneously choos and , respectively. 1q 2q •
劳动创造美好生活After obrving and , then firm 3 and firm 4 simultaneously choos and , respectively.
1q 2q 3q 4q Find the subgame perfect Nash equilibrium. What is the outcome?
You may u the property of symmetry when you solve equations.
19. Bayesian Nash equilibrium. This part contains two questions.
(1) Battle of xes with incomplete information (version one)
Consider the battle of xes with incomplete information. This static game of incomplete information has a Bayesian Nash equilibrium: (Opera, (Opera if happy, Prize Fight if unhappy)) if Chris believes that Pat is happy with probability 0.5, and unhappy with probability 0.5 (Why? Surely it needs computing carefully). Now we